Решение проблем по методикам спецслужб
Часть 36 из 57 Информация о книге
Для доступа к библиотеке пройдите авторизацию
Эта формула особенно удобна, когда контекст проблемы не позволяет быстро определить, что на что делить. Меня учили, что в этом случае как раз и нужно рассуждать упрощенно: что есть часть, а что – целое. Вот, скажем: в бушеле[24] 40 яблок, из которых десять гнилые. Какова доля гнилых яблок? Некоторым может быть сложно сразу решить, что должно быть в числителе и что в знаменателе. Для этого просто перефразируйте задачу: какую долю от 40 составляет 10? То есть какой процент составляет 10 от 40? И сразу понятно: 10 / 40 = 0,25, или 25 %. Прекрасно! (Господи, благослови моих школьных учителей.)
Упражнение 32. Конфеты (1)
Давайте используем нашу формулу и рассчитаем, какова в процентах доля красных, желтых и зеленых конфет в банке. Сделайте подсчеты и запишите результат.
Вот что у вас должно было получиться:
• красные: какую долю от 90 составляет 45? 45 / 90 = 0,5, или 50 %;
• желтые: какую долю от 90 составляет 36? 36 / 90 = 0,4, или 40 %;
• зеленые: какую долю от 90 составляет 9? 9 / 90 = 0,1, или 10 %.
Теперь давайте переведем проценты в вероятности и запишем цифры на нашем дереве сценариев (рис. 13.2).
Рис. 13.2
Так как это дерево содержит вероятности, я предлагаю называть его дерево вероятностей.
Дерево вероятностей
Дерево вероятностей обладает всеми свойствами дерева сценариев и имеет еще одну особенность: оно позволяет нам анализировать весь набор событий с точки зрения вероятностей, то есть оценивать, какой из сценариев наиболее или наименее вероятен и какие решения и события в рамках каждого из альтернативных сценариев более или менее вероятны. Из дерева сценариев мы видим лишь, что может или чего не может произойти, – а дерево вероятностей показывает, какие события более или менее вероятны. Добавление к анализу нового параметра, вероятности, приближает наши рассуждения и заключения к реальной жизни.
Дерево вероятностей помогает сфокусироваться на тех решениях и событиях, которые и определяют вероятность наиболее важных для нас сценариев: проверять допущения и предположения, собирать дополнительные факты. Мы можем по своему усмотрению менять вероятность каждого из решающих факторов: такой анализ называется сенситивным, или анализом чувствительности. Дерево вероятностей подсказывает нам, на каких решениях или событиях необходимо сфокусировать внимание, если мы хотим повысить вероятность того или иного сценария. Представляете, какое это преимущество: вы теперь можете рассчитать, на чем именно нужно сконцентрировать усилия, чтобы получить желаемый результат.
При построении дерева вероятностей необходимо строго придерживаться трех приведенных ниже правил.
1. Как и в случае с деревом сценариев, события должны быть взаимоисключающими, то есть каждое из них должно быть самостоятельным и независимым от других.
2. Совокупность событий должна быть исчерпывающей, то есть включать все возможные варианты.
3. Суммарная вероятность событий каждой из ветвей дерева должна равняться единице.
Тем, кто редко сталкивается с численной оценкой вероятностей, важно помнить, что событие не может произойти большее количество раз, чем указывает его вероятность. Вероятность не может превышать 100 %, или единицы.
Давайте немного усложним задачу про конфеты.
Какова вероятность вытащить красную или зеленую конфету, засунув руку в банку один раз?
Чтобы решить эту задачу, давайте рассуждать в процентах: каков процент красных или зеленых конфет в банке? У нас 45 красных и девять зеленых, то есть всего 54 такие конфеты. Какой процент от 90 составляет 54? Считаем: 54 / 90 = 0,6. То есть вероятность вытащить за один раз зеленую или красную конфету составляет 60 %. Мы сложили вероятности вытащить красную (0,5) или зеленую (0,1) конфеты.
Упражнение 33. Конфеты (2)
Какова вероятность вытащить за один раз красную или желтую конфету? Какова вероятность вытащить желтую или зеленую? Запишите ответы на листке бумаги.
Вероятность вытащить красную или желтую конфету: 0,5 + 0,4 = 0,9.
Вероятность вытащить желтую или зеленую конфету: 0,4 + 0,1 = 0,5.
Важно понимать: наше «или» означает необходимость сложить вероятности отдельных событий. Многие этого не осознают, пока как следует не разберутся, из чего я делаю вывод, что такая концепция человеку интуитивно не очевидна. И даже после объяснения многие этот принцип понимают не до конца. Как писал Кэмпбелл, люди не запоминают правил расчета вероятности, даже когда применяют их для решения задач. Поэтому большинству из нас нужно всякий раз выводить эти правила заново.
Давайте попрактикуемся: построим дерево вероятностей и рассчитаем вероятности.
Упражнение 34. Лиса в курятнике
В курятнике 50 кур: десять рыжих, пять черных, 15 коричневых, 20 белых. Если лиса проберется в курятник и наугад схватит одну из куриц, какова вероятность того, что ей попадется рыжая или коричневая курица? На листе бумаги постройте дерево вероятностей, отметьте на нем кур всех типов, посчитайте вероятность того, что лиса схватит курицу каждого из цветов по отдельности, а затем ответьте на вопрос задачи.
На рис. 13.3 показано дерево вероятностей.
Рис. 13.3
Вероятность поймать рыжую курицу составляет 0,2, вероятность поймать коричневую – 0,3. Поэтому вероятность поймать рыжую или коричневую курицу составляет 0,2 + 0,3 = 0,5.
Вероятность взаимосвязанных событий
Как рассчитывается вероятность взаимосвязанных событий? Перемножением вероятностей всех этих событий. Сейчас я объясню, почему это так.
Какова вероятность, что при подбрасывании монеты два раза подряд выпадет орел?
На рис. 13.4 представлено дерево вероятностей, иллюстрирующее все возможные последовательности событий. Вероятность, что при первом броске выпадет орел, равна 0,5. Если выпадает решка, эксперимент заканчивается, так как нам нужно, чтобы орел выпал два раза подряд. Поэтому второй раз мы бросаем монету, только если в первый раз выпал орел. То есть второй бросок зависит от результата первого: между этими событиями существует взаимосвязь. Если в первый раз выпадает орел, то какова вероятность, что и во второй раз выпадет орел? По-прежнему 0,5. То есть мы получаем 50 %-ную вероятность от 50 %-ной вероятности (0,5 умножить на 0,5), что два раза подряд выпадет орел. Вероятность наступления этих двух последовательных событий равна 0,25.
Рис. 13.4
Давайте рассчитаем вероятность взаимосвязанных событий на примере задачи с конфетами. Какова вероятность того, что мы вытащим вначале красную конфету (и вернем ее в банку), а сразу за ней зеленую? Цепочка событий представлена на рис. 13.5. Вероятность вытащить красную конфету равна 0,5; вероятность вытащить зеленую конфету, без привязки к красной, – 0,1. Поэтому вероятность вытащить красную, а потом зеленую конфету равна 0,5 × 0,1 = 0,05.
Упражнение 32. Конфеты (1)
Давайте используем нашу формулу и рассчитаем, какова в процентах доля красных, желтых и зеленых конфет в банке. Сделайте подсчеты и запишите результат.
Вот что у вас должно было получиться:
• красные: какую долю от 90 составляет 45? 45 / 90 = 0,5, или 50 %;
• желтые: какую долю от 90 составляет 36? 36 / 90 = 0,4, или 40 %;
• зеленые: какую долю от 90 составляет 9? 9 / 90 = 0,1, или 10 %.
Теперь давайте переведем проценты в вероятности и запишем цифры на нашем дереве сценариев (рис. 13.2).
Рис. 13.2
Так как это дерево содержит вероятности, я предлагаю называть его дерево вероятностей.
Дерево вероятностей
Дерево вероятностей обладает всеми свойствами дерева сценариев и имеет еще одну особенность: оно позволяет нам анализировать весь набор событий с точки зрения вероятностей, то есть оценивать, какой из сценариев наиболее или наименее вероятен и какие решения и события в рамках каждого из альтернативных сценариев более или менее вероятны. Из дерева сценариев мы видим лишь, что может или чего не может произойти, – а дерево вероятностей показывает, какие события более или менее вероятны. Добавление к анализу нового параметра, вероятности, приближает наши рассуждения и заключения к реальной жизни.
Дерево вероятностей помогает сфокусироваться на тех решениях и событиях, которые и определяют вероятность наиболее важных для нас сценариев: проверять допущения и предположения, собирать дополнительные факты. Мы можем по своему усмотрению менять вероятность каждого из решающих факторов: такой анализ называется сенситивным, или анализом чувствительности. Дерево вероятностей подсказывает нам, на каких решениях или событиях необходимо сфокусировать внимание, если мы хотим повысить вероятность того или иного сценария. Представляете, какое это преимущество: вы теперь можете рассчитать, на чем именно нужно сконцентрировать усилия, чтобы получить желаемый результат.
При построении дерева вероятностей необходимо строго придерживаться трех приведенных ниже правил.
1. Как и в случае с деревом сценариев, события должны быть взаимоисключающими, то есть каждое из них должно быть самостоятельным и независимым от других.
2. Совокупность событий должна быть исчерпывающей, то есть включать все возможные варианты.
3. Суммарная вероятность событий каждой из ветвей дерева должна равняться единице.
Тем, кто редко сталкивается с численной оценкой вероятностей, важно помнить, что событие не может произойти большее количество раз, чем указывает его вероятность. Вероятность не может превышать 100 %, или единицы.
Давайте немного усложним задачу про конфеты.
Какова вероятность вытащить красную или зеленую конфету, засунув руку в банку один раз?
Чтобы решить эту задачу, давайте рассуждать в процентах: каков процент красных или зеленых конфет в банке? У нас 45 красных и девять зеленых, то есть всего 54 такие конфеты. Какой процент от 90 составляет 54? Считаем: 54 / 90 = 0,6. То есть вероятность вытащить за один раз зеленую или красную конфету составляет 60 %. Мы сложили вероятности вытащить красную (0,5) или зеленую (0,1) конфеты.
Упражнение 33. Конфеты (2)
Какова вероятность вытащить за один раз красную или желтую конфету? Какова вероятность вытащить желтую или зеленую? Запишите ответы на листке бумаги.
Вероятность вытащить красную или желтую конфету: 0,5 + 0,4 = 0,9.
Вероятность вытащить желтую или зеленую конфету: 0,4 + 0,1 = 0,5.
Важно понимать: наше «или» означает необходимость сложить вероятности отдельных событий. Многие этого не осознают, пока как следует не разберутся, из чего я делаю вывод, что такая концепция человеку интуитивно не очевидна. И даже после объяснения многие этот принцип понимают не до конца. Как писал Кэмпбелл, люди не запоминают правил расчета вероятности, даже когда применяют их для решения задач. Поэтому большинству из нас нужно всякий раз выводить эти правила заново.
Давайте попрактикуемся: построим дерево вероятностей и рассчитаем вероятности.
Упражнение 34. Лиса в курятнике
В курятнике 50 кур: десять рыжих, пять черных, 15 коричневых, 20 белых. Если лиса проберется в курятник и наугад схватит одну из куриц, какова вероятность того, что ей попадется рыжая или коричневая курица? На листе бумаги постройте дерево вероятностей, отметьте на нем кур всех типов, посчитайте вероятность того, что лиса схватит курицу каждого из цветов по отдельности, а затем ответьте на вопрос задачи.
На рис. 13.3 показано дерево вероятностей.
Рис. 13.3
Вероятность поймать рыжую курицу составляет 0,2, вероятность поймать коричневую – 0,3. Поэтому вероятность поймать рыжую или коричневую курицу составляет 0,2 + 0,3 = 0,5.
Вероятность взаимосвязанных событий
Как рассчитывается вероятность взаимосвязанных событий? Перемножением вероятностей всех этих событий. Сейчас я объясню, почему это так.
Какова вероятность, что при подбрасывании монеты два раза подряд выпадет орел?
На рис. 13.4 представлено дерево вероятностей, иллюстрирующее все возможные последовательности событий. Вероятность, что при первом броске выпадет орел, равна 0,5. Если выпадает решка, эксперимент заканчивается, так как нам нужно, чтобы орел выпал два раза подряд. Поэтому второй раз мы бросаем монету, только если в первый раз выпал орел. То есть второй бросок зависит от результата первого: между этими событиями существует взаимосвязь. Если в первый раз выпадает орел, то какова вероятность, что и во второй раз выпадет орел? По-прежнему 0,5. То есть мы получаем 50 %-ную вероятность от 50 %-ной вероятности (0,5 умножить на 0,5), что два раза подряд выпадет орел. Вероятность наступления этих двух последовательных событий равна 0,25.
Рис. 13.4
Давайте рассчитаем вероятность взаимосвязанных событий на примере задачи с конфетами. Какова вероятность того, что мы вытащим вначале красную конфету (и вернем ее в банку), а сразу за ней зеленую? Цепочка событий представлена на рис. 13.5. Вероятность вытащить красную конфету равна 0,5; вероятность вытащить зеленую конфету, без привязки к красной, – 0,1. Поэтому вероятность вытащить красную, а потом зеленую конфету равна 0,5 × 0,1 = 0,05.