Куда летит время. Увлекательное исследование о природе времени
Часть 8 из 27 Информация о книге
Для доступа к библиотеке пройдите авторизацию
Он повторяет одно и то же несколько раз кряду, слегка изменяя формулировки, и так продолжается годами. «Я ничего не видел и не слышал, ни к чему не прикасался, не ощущал никаких запахов, как будто и не жил вовсе». Так он воспринимает мир, по крайней мере до тех пор, пока не сосредоточит внимание на чем-то другом.
НАШЕ ВОСПРИЯТИЕ ВРЕМЕНИ КОНСТРУИРУЕТСЯ ИЗ ОПРЕДЕЛЕННЫХ ЕДИНИЦ, КАЖДАЯ ИЗ КОТОРЫХ ПРЕДСТАВЛЯЕТ СОБОЙ ДЛИТЕЛЬНОСТЬ С ЧЕТКО РАЗЛИЧИМЫМ НАЧАЛОМ И КОНЦОМ
Однако миг осознания пробуждения как вхождения в настоящее оказался настолько важным, что Уэринг отмечает их в дневнике, постоянно делая новые записи. Отмечая в дневнике время пробуждения, к примеру 10:50, он тут же записывает свои ощущения: «Мое первое пробуждение!» Потом он обнаруживает похожую фразу строкой выше, сделанную несколькими минутами раньше, сверяется с наручными часами, вычеркивает предыдущую запись, как будто ее сделал не он сам, а какой-то проходимец, подчеркивает только что записанные строки. Целые страницы исписаны подобными пометками, и каждая из них, кроме последней, перечеркнута. На сегодняшний день дневник Уэринга, если его можно так назвать, насчитывает тысячи страниц и десятки томов, и каждый миг пробуждения утверждает свое превосходство над предыдущим.
14:10. Сейчас я по-настоящему проснулся…
14:14. В этот раз я проснулся окончательно…
14:35. Теперь я пробудился полностью…
21:40. Я проснулся в первый раз, несмотря на предыдущие заявления.
И я проснулся как следует в 8:47.
А полностью пробудился – в 8:49, осознав, насколько трудно окружающим меня понять.
* * *
Решив занять гостей во время обеда, герой фантастического романа Г. Дж. Уэллса «Машина времени», которого автор предлагает называть Путешественником по Времени, рассказывает, как он изобрел устройство для перемещений во времени. Ранее, всего за несколько минут до встречи с изнеженными элоями и звероподобными морлоками в 802 701 году, до высадки на безжизненном побережье около тридцати миллионов лет спустя, до появления измученного жаждой героя в гостиной, он сел в кресло своей машины, рванул на себя рычаг и «унесся в будущее».
«Сразу наступила темнота, как будто потушили лампу, но в следующее же мгновение вновь стало светло. Я неясно различал лабораторию, которая становилась все более и более туманной. Вдруг наступила ночь, затем снова день, снова ночь и так далее, все быстрее. У меня шумело в ушах, и странное ощущение падения стало сильнее.
…Пока я мчался таким образом, ночи сменялись днями, подобно взмахам крыльев. Скоро смутные очертания моей лаборатории исчезли, и я увидел солнце, каждую минуту делавшее скачок по небу от востока до запада, и каждую минуту наступал новый день… Самая медленная из улиток двигалась для меня слишком быстро… Я видел, как деревья вырастали и изменяли форму подобно клубам дыма: то желтея, то зеленея, они росли, увеличивались и исчезали. Я видел, как огромные великолепные здания появлялись и таяли, словно сновидения. Вся поверхность земли изменялась на моих глазах… Я пролетал более года в минуту, и каждую минуту снег покрывал землю и сменялся яркой весенней зеленью»[41].
Роман «Машина времени» был издан в 1895 году, когда тема путешествий во времени активно муссировалась литераторами. Перемещения в будущее и в прошлое, как правило, происходили внезапно, по милости неведомых сил. Заглавные персонажи романов «Оглядываясь назад» или «Вести ниоткуда» засыпали в XIX веке, а затем пробуждались от долгого сна уже в XXI веке.
В «Хрустальном веке» путешественник приходит в сознание спустя тысячу лет после падения со скалы, в чем он абсолютно уверен. В «Британских варварах» антрополог из XXV века однажды приезжает в Суррей в «хорошо скроенном сером твидовом костюме». «Машина времени» примечательна тем, что способ перемещения во времени, как и само по себе время, становится одним из самых интригующих моментов сюжета. Путешественник по Времени – не пассивный заложник обстоятельств; в ситуации выбора он самостоятельно определяет цели дальнейших действий. Кроме того, он не просто очутился в будущем, а с нарастающей скоростью прорывается через каждое мгновение между «сейчас» и «тогда». В его руках время исчисляемо и физически измеряемо; видимое воочию настоящее расширяется, вбирая в себя времена года, человеческие жизни и геологические эпохи. Воспринимаемое настоящее значит не более того, чем по сути является – восприятием времени. Изменяя свое восприятие времени, путешественник изменяет само время.
Уэллс уверенно ориентировался в научных воззрениях тех лет. В университетские годы он изучал биологию под руководством Т. Г. Хаксли, и он, конечно же, читал «Принципы психологии» Джеймса, как и все люди его круга. В 1894 году газета Saturday Review опубликовала критический обзор психологических теорий того времени – работу Уэллса, за которой стояло основательное изучение литературы, посвященной проблемам памяти, сознания, зрительного восприятия, внушения и иллюзий. (Один из нынешних ученых, изучив хронологию мира «Машины времени», пришел к ошеломительному выводу, что Путешественник по Времени попросту разыграл своих гостей, когда за обедом поведал им о своих странствиях. По его мнению, вся история с перемещением в будущее приснилась главному герою, когда после долгой прогулки на трехколесном велосипеде по окрестностям его сморил полуденный сон.) Первая глава романа в действительности представляет собой краткое разъяснение актуальных представлений о восприятии времени. «Единственное различие между Временем и любым из трех пространственных измерений заключается в том, что наше сознание движется по нему», – говорит Путешественник по Времени своим гостям, а затем принимается развивать собственную теорию времени в терминах геометрии четырех измерений, которую Уэллс, вероятно, позаимствовал из лекции Нью-Йоркского математического общества, прочитанной в 1893 году. «Вы никогда не уйдете от настоящего момента», – возражает один из гостей, на что Путешественник по Времени отвечает: «Мы постоянно уходим от настоящего момента». При отправке модели машины времени в первое путешествие во времени на пусковой рычаг нажимает не кто иной, как Психолог.
За Уильямом Джеймсом водилась привычка делать записи по поводу прочитанного, но в бумагах ученого нет ни одного упоминания о «Машине времени», хотя круг его литературных предпочтений был на редкость широк – от Блаженного Августина до «Доктора Джекилла и мистера Хайда» («Это настоящий волшебник», – писал ученый о Р. Л. Стивенсоне). В переписке с Уэллсом Джеймс похвально отзывается о философских эссе «Утопия» и «Первое и последнее», сравнивая дарование автора с талантом Киплинга и Толстого; Уэллс, в свою очередь, активно внимал прагматической философии Джеймса и называл его «своим другом и наставником». По одной из версий, в 1899 году Джеймс и Уэллс пересеклись на вечеринке в доме Стивена Крэйна, когда игра в покер до поздней ночи плавно перетекла в ланч и посиделки за пивом. Биограф Джеймса Ричардсон описывает случай, имевший место несколько лет спустя, когда Уэллс навещал Джеймса, гостившего у брата Генри, который проживал в Англии. Генри пришел в восторг, застав Уильяма на лестнице в саду: ученый то и дело заглядывал за изгородь, надеясь хотя бы одним глазом увидеть Г. К. Честертона: в те дни романист остановился в гостинице, располагавшейся в соседнем здании. «До такого точно еще никто не додумался – это было попросту не принято», – позже вспоминал Уэллс.
Впрочем, Джеймс постоянно делал то, до чего никто другой бы не додумался. Вскарабкаться на лестницу, не раздумывая, – вполне в его импульсивном характере; его не остановила бы даже острая нехватка времени. Впоследствии ученый забирался на лестницу еще два или три раза. «Он постоянно торопился», – сообщил мне Ричардсон, ссылаясь на автобиографический роман Генри Джеймса «Маленький мальчик и другие», опубликованный в 1913 году, спустя три года после довольно ранней смерти Уильяма – в возрасте шестидесяти восьми лет. Генри писал, что его брат то и дело «исчезал за углом и терялся из виду», метафорически передавая свое восприятие их разницы в возрасте (Уильям был на год старше), однако эти слова вполне применимы к Уильяму и в буквальном смысле. «Он отличался очень живым характером, все время был „на взводе“ и постоянно балансировал на грани нервного срыва, – характеризует Ричардсон своего героя. – Полагаю, он чувствовал, что ему отпущено совсем немного времени. В сущности, так оно и было».
Однажды вечером на исходе лета 1860 года в Санкт-Петербурге состоялось первое собрание Русского энтомологического общества. Кульминацией программы должен был стать доклад досточтимого немецкого зоолога Карла Эрнста фон Бэра, вошедшего в историю науки главным образом благодаря дотошной критике дарвинистского тезиса о происхождении всех живых организмов от единых предков. Сам Дарвин глубоко восхищался Бэром, воздавая должное его могучему интеллекту, незаурядному таланту наблюдателя и революционным открытиям в биологии. Бэр одним из первых выдвинул теорию о развитии из яйца всех млекопитающих, включая человека. К такому выводу ученый пришел, скрупулезно исследуя сотни крошечных бесформенных эмбрионов кур и других видов под микроскопом и не переставая удивляться бесконечному разнообразию организмов, происходящих от похожих зачаточных форм.
Тема доклада Бэра была сформулирована в форме вопроса: «Welche Auffassung der lebenden Natur ist die richtige? Und wie ist diese Auffassung auf die Entomologie anzuwenden?», или: «Какое представление о сущности живого следует считать правильным и насколько оно применимо к энтомологии?» Возможно, для массовой аудитории тема покажется странной и трудной для понимания, а для собрания любителей насекомых и подавно. Но в ходе своего выступления фон Бэр затронул проблему, которая имела хождение среди философов еще с XVII века, а с недавних пор попала в поле зрения естественной науки: как долго длится настоящий момент?
ВОСПРИЯТИЕ ТЕЧЕНИЯ ВРЕМЕНИ ОТНОСИТЕЛЬНО: ОДИН И ТОТ ЖЕ ОТРЕЗОК ВРЕМЕНИ ДЛЯ КОГО-ТО СЖИМАЕТСЯ В ОДИН МИГ, А ДЛЯ КОГО-ТО РАСТЯГИВАЕТСЯ НА НЕСКОЛЬКО
Ничто не длится постоянно, сообщил Бэр своим слушателям. Мы по ошибке принимаем за постоянство мнимую незыблемость гор и морей, но в действительности это всего лишь иллюзия, обусловленная короткой продолжительностью нашей жизни. Вообразите на мгновение, что течение человеческой жизни резко ускорилось или замедлилось – «очевидно, что тогда все законы природы предстанут в совершенно ином свете, по крайней мере для непосредственного наблюдателя». Предположим, что вся человеческая жизнь, от рождения до глубокой старости, длится всего двадцать девять дней – одну тысячную ее нормальной продолжительности. Такой Monaten-Mensch, или «одномесячный человек», никогда не увидит полного цикла луны, поэтому понятие времен года, снега и льда будет для него такой же абстракцией, как для нас ледниковый период. Так живут многие существа, включая некоторые виды насекомых и грибов, срок жизни которых составляет всего несколько дней. Теперь представьте, что продолжительность жизни человека сократится еще в тысячу раз и составит лишь сорок две минуты. Перед нами окажется Minuten-Mensch, или «минутный человек», которому неведома смена дня и ночи, а деревья и цветы видятся неизменными.
Теперь рассмотрим противоположный сценарий, продолжал Бэр. Давайте представим, что наш пульс не ускорился, а замедлился в тысячу раз по сравнению с нормальной частотой пульса. Если предположить, что объем чувственных впечатлений пропорционален числу ударов пульса, то «проживая жизнь в своем ритме, такой человек достигнет преклонного возраста, прожив около 80 000 лет. Год в его представлении будет равен 8,75 часа. В таком случае мы бы перестали замечать таяние снега, подземные толчки, набухание почек на деревьях, медленное созревание плодов и листопад». Мы могли бы наблюдать, как поднимаются и рушатся горные цепи, но существование божьей коровки оставалось бы незамеченным. Точно так же были бы потеряны для нас цветы, только у деревьев оставался бы шанс произвести на нас впечатление, а солнце, должно быть, оставляло бы за собой шлейф на небосводе, как комета или пушечное ядро. Теперь продлим жизнь человека еще в тысячу раз, и ее продолжительность достигнет 80 миллионов лет, но частота пульса при этом будет равна всего 31,5 удара за земной год, а количество актов восприятия соответственно снизится до 189. Солнце из четко очерченного диска превратится в сверкающий эллипс, чуть тускнеющий зимой. В течение десяти ударов пульса в календарный год Земля покажется зеленой, на протяжении следующих десяти ударов – белой, а таяние снега будет происходить за полтора сердечных такта.
Распространение микроскопов и телескопов в XVII–XVIII веках породило поток рассуждений об относительности величин. В обоих направлениях космос оказался намного больше и изобильнее, чем представлялось ранее, человеческая перспектива начала терять чувство исключительности: наше видение мира оказалось лишь одним из множества возможных. Предположим, рассуждал философ Николя Мальбранш в 1678 году, что Бог сотворил мир настолько огромный, что отдельное дерево, произрастающее в нем, покажется нам гигантским, хотя в глазах жителей того мира оно будет выглядеть вполне нормальным. Также можно вообразить и другой мир, который кажется нам крошечным, однако в глазах его крошечных обитателей разворачивается во всю ширь. «Car rien n’est grand ni petit en soi», – писал Мальбранш; вещи не малы и не велики ни сами по себе, ни за своими пределами. Вскоре Джонатан Свифт отобразил идеи Мальбранша в своих романах: мироощущение лилипутов и великанов из страны Бробдингнег равнозначно по объему и степени детализации.
Так и со временем. «Представьте себе мир величиной с орех, который вмещает такое же множество вещей, как и наш, – писал французский философ Этьен Бонно де Кондильяк в 1754 году. – Не подлежит сомнению, что звезды в таком мире будут восходить и заходить над небосклоном тысячи раз за отрезок времени, который в нашем представлении равен часу». Сила воображения также может создать мир необъятных масштабов, по сравнению с которым наш мир покажется ничтожно малым: в глазах существ, населяющих мир гигантского размаха, жизнь человека не более чем вспышка, но для жителей планеты Орех наши жизни длятся миллиарды лет. Восприятие течения времени относительно: один и тот же отрезок времени для кого-то сжимается в один миг, а для кого-то растягивается на несколько мгновений.
Безусловно, все эти измышления – в некоторой степени игра слов. Определяя день как период полного обращения Земли вокруг своей оси, мы будем вынуждены признать, что продолжительность суток одинакова для всех – для людей, коротышек и орехов. Хронобиолог не преминул бы заметить, что ощущение суточного ритма закреплено в нас на генетическом уровне независимо от того, сознаем мы это или нет. Однако, с точки зрения Кондильяка, для коротышек, населяющих планету Орех, такая единица времени, как сутки, не несет никакой практической ценности и едва ли осязаема. Рассуждения французского философа отображают представления о времени, которые и сейчас в ходу: оценка длительности текущего момента определяется количеством действий и идей, проходящих через сознание в течение его развертывания. «Мы воспринимаем продолжительность, только рассматривая цепь чередующихся в нашем разуме идей»[42], – утверждал Джон Локк в 1690 году. Если вы получили много впечатлений за короткий период, тогда длительность времени, наполненного ощущениями, будет казаться большей, пока вы ее проживаете. Мгновение может восприниматься нами как ничтожно малое, хотя, согласно Локку, не исключено, что найдутся и другие умы, способные осязать его иначе, но нам известно о них так же мало, «как мало знает запертый в ящике стола червяк о чувствах и разуме человека»[43]. Наш разум, движущийся с постоянной скоростью, способен вместить лишь то количество идей, которые мы можем воспринять за единицу времени. «Если бы наши чувства изменились и стали гораздо живее и острее, внешний вид и облик вещей был бы для нас совершенно иным»[44].
Уильям Джеймс взял на вооружение идеи Локка. Если чувственное восприятие изменено в результате употребления гашиша, писал он в 1886 году, есть вероятность взглянуть на течение времени иначе, с позиции короткоживущих созданий фон Бэра и Спенсера. Коротко говоря, восприятие мира в измененном состоянии сознания в точности напоминает расширение пространства под микроскопом: в поле зрения попадает меньше реальных объектов, но каждый из них занимает намного больше места, чем обычно, за счет чего отдельные предметы кажутся неестественно отдаленными. В 1901 году Г. Дж. Уэллс написал короткий рассказ под названием «Новейший ускоритель», в котором говорилось об изобретении эликсира, ускоряющего процессы жизнедеятельности и восприятия в тысячу раз. Отведав эликсира-ускорителя, попробуйте опрокинуть стакан, и вам покажется, будто он завис в воздухе, а прохожие на улицах покажутся «застывшими восковыми фигурами». «Наша задача – изготовить и продавать „ускоритель“, а что из этого выйдет – посмотрим»[45], – подытоживает Уэллс. Хотя мы мало осознаем это, но человек одновременно пребывает в нескольких измерениях времени. Человеческое сердце в среднем совершает один удар в секунду. Разряд молнии длится одну сотую секунды. На исполнение единичной команды программного обеспечения домашний компьютер затрачивает несколько наносекунд – миллиардных долей секунды. Время переключения между схемами исчисляется пикосекундами – триллионными долями секунды. Несколько лет назад физикам удалось получить вспышку лазерного излучения длительностью всего пять фемтосекунд, или пять квадриллионных долей (5Ч10–15) секунды. В повседневной практике фотографии вспышка фотокамеры «останавливает время» со скоростью в одну тысячную секунды, достаточно быстро, чтобы запечатлеть размах бейсбольной биты, если не получается заснять ускоренный полет мяча. Аналогично благодаря фемтосекундному импульсу лазерной «лампы-вспышки» ученые получили возможность непосредственно наблюдать явления, которые ранее не удавалось запечатлеть стоп-кадром: колебания молекул, создание межатомных связей в ходе химических реакций и другие феномены микромира, протекающие с невероятной скоростью.
На основе фемтосекундного импульса разработан ряд мощных инструментов. Фемтосекундный импульс незаменим при бурении микроскважин, так как за счет быстрого поглощения энергии разряда не происходит нагрева среды и, как следствие, возрастает КПД устройства и уменьшается количество отходов. Также, с учетом скорости распространения света (чуть меньше трехсот миллионов метров в секунду), длина волны фемтосекундного светового импульса равна одной тысячной миллиметра. (Для сравнения: длина волны светового импульса длительностью в одну секунду составляет три четверти расстояния от Земли до Луны.) Фемтосекундные импульсы можно уподобить крошечным, но «умным» бомбам, которые могут использоваться для нанесения точечных ударов непосредственно под поверхностью светопроницаемой среды, без повреждения верхнего слоя. Разработки в области применения фемтосекундных импульсов при травлении оптических волноводов в стеклопанелях потенциально способны совершить переворот в телекоммуникациях и технологиях сохранения данных. Кроме того, исследователи фемтосекундных импульсов открыли новый метод в лазерной микрохирургии глаза, позволяющий производить хирургические манипуляции на роговице, не травмируя ткани, расположенные над ней. «Таким образом можно проникнуть внутрь любой биологической среды с минимальными затратами энергии», – объяснил мне Пол Коркум, физик из Института молекулярных исследований имени Эдгарда Стиси в Оттаве, Канада, и один из ведущих специалистов проекта.
Однако даже запредельной скорости все еще недостаточно. Между первой и второй квадриллионной долей секунды разворачиваются процессы первостепенной важности, так что недостаточная скорость импульсной лампы может привести к тому, что вы их попросту упустите. Поэтому ученые вложили в проект максимум усилий и трудились от звонка до звонка, спеша создать еще меньшие временные окна для изучения материального мира. Несколько лет назад одна международная исследовательская группа физиков наконец-то преуспела в попытках преодоления так называемого фемтосекундного барьера. При помощи сложного высокоэнергетического лазера был получен световой импульс длительностью чуть более половины фемтосекунды, а именно 650 аттосекунд, если выразиться точнее. Долгое время аттосекунда (10–18 секунды) существовала исключительно в виде теоретической единицы измерения времени, но в этот раз ей впервые нашлось практическое применение. Новообретенный временной интервал совсем невелик, однако его потенциал способен развернуться в раблезианских масштабах. «В лице новой единицы времени мы приобрели реалистичную временную шкалу для описания процессов, происходящих внутри материи, – уверяет Коркум. – Мы получили возможность исследовать микромир атомов и молекул в его системе координат».
АТТОСЕКУНДЫ ПОДАРЯТ НАМ НОВЫЙ ВЗГЛЯД НА ЭЛЕКТРОНЫ. ОНИ СТАЛИ НОВОЙ МЕРОЙ ВЕЩЕСТВА, КОТОРАЯ ВПОСЛЕДСТВИИ РАСПРОСТРАНИТСЯ НА ВСЕ НАУКИ. НАЧАЛАСЬ ЭПОХА АТТОФИЗИКИ
Практическая ценность аттосекундного импульса была продемонстрирована едва ли не в момент получения. Физики направили аттосекундный импульс в сопровождении более продолжительного импульса красного излучения на порцию атомарного криптона. Аттосекундный разряд привел атомы криптона в возбужденное состояние, выбив из орбиталей несколько электронов, после чего через высвобожденные электроны пропускался импульс красного излучения, определяя уровень их энергии. Скорректировав интервал между прохождением импульсов, ученые добились исключительной точности измерений периода распада электронов с погрешностью до аттосекунд. До сих пор изучение динамики электронов в столь краткосрочном временном масштабе не представлялось возможным. Так или иначе, эксперимент наделал шума в мире физики. «Аттосекунды подарят нам новый взгляд на электроны, – сообщил мне физик Луис Ди-Мауро, сотрудник Брукхейвенской национальной лаборатории. – Они стали новой мерой вещества, которая впоследствии распространится на все науки. Началась эпоха аттофизики».
Само собой, однажды, возможно даже и в ближайшем будущем, настанет момент, когда и аттосекунды перестанут удовлетворять запросы науки. Для проникновения в суть процессов, происходящих внутри атомного ядра, применительно к которым естественное течение времени ускоряется на порядки, физикам придется научиться мыслить в категориях зептосекунд или даже секстиллионных долей секунды. В то же время ученым еще предстоит обработать полученные данные в предельно сжатые сроки. Можно вообразить, с каким энтузиазмом они примутся заполнять жесткие диски домашних компьютеров любительской съемкой электронов и забивать эфир видеороликами, записанными в аттосекундах, которые будут зависать на секунды, кажущиеся вечностью. Впрочем, Коркум убежден, что этого не случится. «В действительности мы рассматриваем только приемлемые единицы времени». По его словам, в краткосрочной перспективе, как и в долгосрочной, мера терпения зрителя устанавливает ограничения при подборе единиц времени. «Мой шурин недавно переслал мне видеоролики, в которых фигурировал их ребенок, – рассказывает Коркум. – Сначала было забавно их просматривать, но после пятнадцати минут просмотра я спохватился: видео непозволительно затянулось».
* * *
В молодости, когда у меня было больше свободного времени, летом мне нравилось лежать на траве с закрытыми глазами и подсчитывать, сколько звуков я могу услышать одновременно. С одной стороны стрекочут цикады. С высоты небес доносится отдаленный рев реактивного самолета. Сзади шелестит листва, встревоженная легким дуновением ветра. Некоторые звуки постоянно находились рядом, другие возникали и утихали, как, скажем, крик голубой сойки. Впоследствии я обнаружил, что удерживаю в уме не более четырех-пяти одновременно, после чего какой-то из них выпадает из внимания, и даже определил, в какой момент один звук, записанный в моей памяти, сменяется другим, и чувствовал себя жонглером, который только что упустил один из мячей и тут же ловит другой взамен упущенного. Ранее я мог подолгу заниматься подсчетом удержавшихся и ускользнувших из внимания звуков, однако позже предпочел сосредоточиться не столько на количестве воспринимаемых в одночасье звуков, сколько на объеме внимания, поглощенного каждым звуком, а также на величине усилия, необходимого для сохранения звуков в поле восприятия.
Концентрация внимания на звуках природы помогала мне расслабиться и в то же время служила методом измерения… чего? Я так толком и не понял, чего именно. Объема внимания? Степени осознанности? Задним числом я понимаю, что так я пытался определить длительность текущего момента доступным мне примитивным способом, предпринимая попытку за попыткой. Задолго до того, как Уильям Джеймс с подачи Э. Р. Клэя ввел понятие «видимое воочию настоящее», большинство ученых соглашалось с тем, что психологическое настоящее имеет фактическую протяженность во времени, и прилагали невероятные усилия, стараясь определить его длительность. Насколько долго длится «сейчас»?
Одна из техник измерения длительности настоящего предполагала подсчет единиц ментальной информации, наполняющих текущее мгновение. С ролью счетчиков хорошо справлялись ритмические сигналы. Представьте себе последовательность ударов, следующих примерно в таком ритме: тикетта-тик-тик-тик, тикетта-тик-тик-тик и так далее. Если отдельные такты запаздывают или спешат, ритм становится неразличимым; разум связывает удары в единое целое только при подаче звуковых сигналов в определенном промежуточном диапазоне скорости, исчисляемом количеством тактов, воспринимаемых за секунду или за минуту времени. Иными словами, ощущение ритма появляется только при условии, что достаточное, но не слишком большое число отдельных тактов подается в течение кратковременного периода сосредоточения, длительность которого может незначительно варьировать. Характеризуя короткий промежуток времени, в течение которого из разрозненных впечатлений формируется ощущение текущего момента, немецкий психолог Вильгельм Вундт прибегал к терминам «охват сознания» или «поле озарения» (Blickfield). В 1870-х годах ученый предпринял попытку определить его параметры. В одном из экспериментов проигрывался звуковой ряд в числе шестнадцати тактов – по восемь пар ударов с частотой один к одному с половиной такта в секунду. Продолжительность «поля озарения» определялась между 10,6 и 16 секундами. Последовательность звуков проигрывалась дважды с короткой паузой между повторами. Участники эксперимента сразу определяли ритм и указывали на идентичность двух ритмичных звукорядов. Если к звуковому ряду длительностью в секунду прибавлялся один такт или, напротив, изымался один такт, слушатель немедленно замечал перемену, даже не подсчитывая ударов. Все участники опыта сознавали общий мотив звукоряда; каждый проигранный ритм, как отмечал Вундт, «сознается как единое целое». Впоследствии ритм ускорился: в следующий раз проигрывалось уже двенадцать отдельных тактов с периодичностью в полсекунды к трети секунды, однако подопытные по-прежнему улавливали единый ритмический рисунок звукоряда, сравнивая один отзвучавший ритм с другим. В результате было установлено, что воспринимаемое настоящее длится от четырех до шести секунд. Человеческий мозг в одночасье распознает до сорока тактов при подаче сигналов пятью пакетами по восемь тактов в каждом с частотой четыре удара в секунду. Таким образом, допустимый диапазон сознательного восприятия звука составляет десять секунд. Кратчайшая длительность звука, доступная восприятию, насчитывала двенадцать тактов, распределенных на три группы по четыре удара, подававшихся со скоростью три такта в секунду. Продолжительность звучания составила четыре секунды.
ОЩУЩЕНИЕ РИТМА ПОЯВЛЯЕТСЯ ТОЛЬКО ПРИ УСЛОВИИ, ЧТО ДОСТАТОЧНОЕ, НО НЕ СЛИШКОМ БОЛЬШОЕ ЧИСЛО ОТДЕЛЬНЫХ ТАКТОВ ПОДАЕТСЯ В ТЕЧЕНИЕ КРАТКОВРЕМЕННОГО ПЕРИОДА СОСРЕДОТОЧЕНИЯ
По другим данным, длительность воспринимаемого настоящего оказалась намного короче. В 1873 году австрийский психолог Зигмунд Экснер заявил, что способен услышать два последовательных щелчка искрового разряда, следующих друг за другом с интервалом в 0,002 секунды. Если участники опыта Вундта судили о длительности настоящего по содержанию заполненного текущего момента, то Экснер определял границы ничем не заполненных мгновений. Определяя длительность настоящего, Экснер обнаружил, что результат в значительной степени зависит от чувств, испытываемых человеком в это время. Возможности слуха открывают доступ к кратчайшему воспринимаемому интервалу протяженностью 0,002 секунды. Зрение функционирует более медленно: наблюдая две последовательные вспышки искрового разряда, следующие друг за другом с небольшим перерывом, Экснер мог достоверно отличить первую вспышку от второй только в тех случаях, когда продолжительность паузы между вспышками составляла более 0,045 секунды – чуть меньше одной двадцатой секунды. Если по условиям эксперимента звук предшествовал световой вспышке, продолжительность интервала между сигналами, необходимого для определения порядка их следования, увеличивалась до 0,06 секунды. Кратчайшая длительность интервала при противоположной задаче, когда вспышка предшествовала звуку, оказалась еще длиннее – 0,16 секунды.
Через несколько лет, в 1868 году, немецкий врач Карл фон Фирордт предложил другой способ определения продолжительности настоящего момента. В опытах Фирордта испытуемым предлагалось прослушать пустой интервал, как правило, обозначаемый двумя щелчками метронома, а затем попытаться воспроизвести его, нажимая кнопку, которая приводила в действие механизм, проставляющий отметку на вращающемся барабане бумаги. Иногда промежуток времени, который следовало воспроизвести, обозначался восемью ударами метронома, а не двумя, либо два удара отстукивали по руке испытуемого небольшой стальной указкой. Анализируя полученные данные, Фирордт заметил любопытную деталь: промежутки времени длительностью менее одной секунды обычно воспринимались как более продолжительные, а продолжительность более длительных интервалов, напротив, недооценивалась. Промежуточное положение занимали короткие отрезки времени, длительность которых оценивалась точно. Путем многократного повторения экспериментов Фирордту удалось конкретизировать длительность кратковременного интервала, в течение которого субъективное ощущение течения времени точно совпадало с объективным. Характеристики показателя, который ученый назвал точкой безразличия, варьировали от одного наблюдателя к другому, однако усредненное значение, как утверждал Фирордт, оставалось постоянным и составляло порядка 0,75 секунды.
В настоящее время очевидно, что в процессе исследования допущено несколько методологических ошибок. Во-первых, почти все экспериментальные данные получены только от двух добровольцев – самого Фирордта и его лаборанта. Тем не менее точка безразличия была признана мерой того, что физиологи и психологи XIX века именовали чувством времени (Zeitsinn). Вундт и коллеги проводили собственные эксперименты по определению точки безразличия, пытаясь установить ее количественное значение и дать феномену четко сформулированное определение. Значения точки безразличия, полученные опытным путем, обычно колебались на уровне трех четвертей секунды, хотя отдельные показатели снижались до трети секунды. При более обстоятельном изучении выяснилось, что полученные в ходе эксперимента значения точки безразличия существенно расходились, но в конце концов ученые, по-видимому, обнаружили психологическую единицу времени – «некоторую абсолютную длительность», которая, как заметил один историк, «всегда присутствует в сознании, утверждая стандарт отсчета времени». Эта длительность, вне зависимости от точной продолжительности, выступает косвенным показателем осознанности восприятия времени, представляя собой кратчайший из возможных моментов сосредоточения внимания непосредственно на воспринимаемом объекте.
Наука подберется к точной продолжительности настоящего и даст интерпретацию полученным данным лишь в XX веке. На сегодняшний день усилия ученых сосредоточены на размежевании двух понятий. Первое характеризует воспринимаемое мгновение, длительность которого трудноуловима, но все же поддается количественному определению. Показателем длительности настоящего момента выступает наиболее продолжительный интервал между двумя событиями, следующими друг за другом, к примеру между парой вспышек искрового разряда, которые, однако, воспринимаются нами синхронно. Второе понятие затрагивает психологическую реальность настоящего – более длительный период, в течение которого происходит развертывание отдельного события, к примеру барабанной дроби. Длительность ощущаемого момента может составить и 90 секунд, и 4,5 миллисекунды, принимая какие угодно значения в пределах пятой и двадцатой доли секунды в зависимости от личности респондента и способа определения; психологическое настоящее может длиться от двух до трех секунд, или от четырех до семи секунд, или не более пяти секунд. Во всяком случае, группа специалистов по когнитивистике высказала предположение о существовании кванта времени – «абсолютной нижней границы разрешения во времени», числовое значение которой оценивается примерно в 4,5 миллисекунды.
К моменту публикации «Принципов психологии» в 1890 году Джеймс был уверен, что большая часть работы по установлению длительности настоящего уже позади. «Мы постоянно сознаем определенный промежуток времени – „видимое воочию настоящее“ – длительностью от нескольких секунд до одной минуты», – писал ученый. Дальнейшие исследования, «изматывающие и обескураживающие», получили уничижительную характеристику: «Новому поколению науки, всем этим философам призмы, маятника и хронографа, недостает широты мышления. Ими движет дух торговли, а не рыцарства». Джеймс расценивал новую фазу немецкого научного поиска как «психологию микроскопического масштаба», которая «подвергает терпение проверкам на прочность и едва ли могла бы появиться в стране, жители которой способны испытывать скуку». По его мнению, временем можно распорядиться и с большей пользой, а не монотонно долбить в одну точку до самой смерти.
* * *
Что бы ни говорили подобного рода эксперименты о присущей нам «интуиции времени», все открытия свидетельствуют о возрастающей точности механических хронометров. Ученые долгое время были озадачены загадкой «животного духа» и «нервных воздействий», которые приводят в действие мышцы и наделяют организм способностью двигаться, познавать мир и ощущать ход времени. Вместе с тем нервные импульсы, как их принято сейчас называть, распространяются со скоростью порядка 120 метров в секунду, или свыше 400 километров в час. Измерительные приборы XVIII века попросту не могли угнаться за ними. Тогда наука полагала, что действие незамедлительно следует за мысленным побуждением. Усовершенствование приборов для измерения времени в XIX веке, которому мы обязаны появлением маятниковых часов, хроноскопов, хронографов, кимографов и других устройств, большей частью позаимствованных у астрономов, открыло доступ к иным временным масштабам, исчисляемым десятыми, сотыми и даже тысячными долями секунды. Инструменты, предназначенные для исследования космоса, нашли применение в исследованиях физиологии, распахнув окно времени достаточно широко для обнаружения бессознательного.
До относительно недавнего времени, когда в обиход вошло атомное время, а точность показаний всемирного координированного времени достигла такого уровня совершенства, что их начали транслировать в новостных выпусках, сигналы точного времени для наших стационарных и наручных часов генерировали астрономические обсерватории, определявшие время по звездам. Проведите в небе воображаемую линию, связывающую север и юг строго по меридиональному направлению. Где бы вы ни находились, солнце каждый день будет проходить через небесный меридиан точно в полдень по местному времени. (Момент пересечения солнцем небесного меридиана известен как астрономический полдень.) Ночью звезды пересекают, а точнее, проходят через меридиан точно в одно и то же время; астрономы научились четко отслеживать прохождение каждой звезды через меридиан. Также по движению звезд можно сверять часы. Раньше часовые мастера и владельцы часов так и поступали: поначалу осаждали местных астрономов, а потом подписывались на уведомления служб точного времени, подконтрольных обсерваториям. В 1858 году в швейцарском городе Невшатель была построена обсерватория, предназначенная специально для обеспечения часовой индустрии сигналами точного времени. «Время будут доставлять прямо на дом, как воду или газ», – хвалился основатель обсерватории Адольф Хирш, занимавший должность главного астронома. Местные часовщики присылали свои стационарные и наручные часы в обсерваторию для проверки, калибровки и прохождения процедуры сертификации, утвержденной на официальном уровне. Часовые мастерские, расположенные далеко от обсерватории, ежедневно получали сигналы точного времени по телеграфу. К 1860 году, когда каждая телеграфная станция в Швейцарии получала сигналы точного времени из Невшателя, установился порядок, который Хеннинг Шмидген, историк и профессор теории медиа Веймарского университета «Баухаус», окрестил «обширным ландшафтом нормативного времени».
Конечно же, ни полдень, ни какое-либо иное время суток не наступает на Земле одновременно. Планета вращается вокруг своей оси, поэтому солнце не может светить нам всем одинаково в одно и то же время; когда в Нью-Йорке наступает полдень, в Гонконге уже полночь. Если двигаться на восток, вы заметите, что рассвет и закат, равно как и полдень, наступают немного раньше относительно отправной точки маршрута, а если двигаться на запад – то немного позже. С продвижением на каждые пятнадцать градусов восточной или западной долготы (при общем числе 360 градусов) наступление полудня соответственно сдвигается на час раньше или позже. При помощи телескопа и часов несложно произвести картирование мира по часовым поясам. Представьте себя в роли астронома Гринвичской обсерватории, расположенной на долготе 0°: если вам известно время прохождения той или иной звезды по нулевому меридиану, вы точно предскажете момент ее прохождения по меридиану 35° западной долготы, расположенному посередине Атлантического океана. А теперь мысленно переместитесь на борт того судна и определите точное время прохождения той же звезды по меридиану при помощи часов и телескопа. Если вам также известно точное время прохождения той же звезды по Гринвичу, вы можете рассчитать долготу, на которой находится судно, исходя из разницы во времени прохождения звезды по меридианам. Во времена британских морских экспедиций XVI–XVII веков долгота определялась преимущественно таким образом, что сыграло решающую роль в изобретении высокоточных морских часов и дало толчок строительству Королевской обсерватории в Гринвиче в 1675 году. Впервые в мире обсерватория возводилась специально ради нужд навигации: Гринвичский меридиан стал надежным ориентиром для расчета координат судов дальнего плавания.
ДАННЫЕ РАСЧЕТА ВРЕМЕНИ У ДВУХ РАЗНЫХ НАБЛЮДАТЕЛЕЙ НИКОГДА НЕ СОВПАДАЮТ В ТОЧНОСТИ; КАЖДОМУ ЧЕЛОВЕКУ СВОЙСТВЕННА СИСТЕМАТИЧЕСКАЯ ОШИБКА НАБЛЮДАТЕЛЯ
Ранее определение местного времени по звездному транзиту требовало колоссальных затрат труда. С приближением нужного момента астроном бросал беглый взгляд на часы, отмечал время с точностью до секунд и уставлялся в телескоп. Поле обзора было расчерчено на ряды вертикальных линий, отделенные друг от друга равными промежутками, для нанесения которых обычно использовалась паутина. Через некоторое время в поле зрения вплывала звезда – яркая светящаяся точка, сверкающая серебром, окруженная цветным гало. Отсчитывая секунды вслух, прислушиваясь к тиканью часов, а иногда к ударам метронома, астроном отмечал точное время прохождения звезды через каждую черту, уделяя особое внимание линии, расположенной посередине, которая изображала меридиан. Методология наблюдения предписывала визуально фиксировать местонахождение звезды по тактам часов дважды – непосредственно перед прохождением линии и сразу после прохождения, документировать обе позиции и сравнивать их между собой, высчитывая разницу в десятых долях секунды, которая равнялась точному времени пересечения меридиана. Данные о времени прохождения звезд по меридианам по дням и неделям можно было сравнивать между собой. Поскольку движение звезд подчинено строгому распорядку, ответственность за любое отклонение от предполагаемого графика возлагалась на часы, которые в таких случаях настраивали заново.
Погрешность измерений при подобной технике регулировки времени достигала двух десятых секунды, но в самой основе метода была допущена системная ошибка. В телескопах разных обсерваторий использовались линзы разной прозрачности. Более того, далеко не в каждой обсерватории часы отбивали такт с одинаковым постоянством, к тому же степень шумоизоляции и вибрационной защиты также не была приведена к единому стандарту. Звезда могла оказаться непривычно яркой или тусклой; мерцать в невидимых воздушных потоках, а в решающий момент и вовсе скрыться за тучами. Самой коварной оказалась погрешность, обусловленная влиянием человеческого фактора, известная в астрономии под названием «систематическая ошибка наблюдателя». В 1795 году королевский астроном Гринвичской обсерватории объявил, что рассчитал своего ассистента по той причине, что показатели времени прохождения звезд по меридиану, зарегистрированные ассистентом, всякий раз на секунду отставали от тех, которые регистрировал он сам: «Мой ассистент следовал собственной методике подсчета, бессистемной и запутанной». Однако в скором времени выяснилось, что данные расчета времени у двух разных наблюдателей никогда не совпадают в точности; каждому человеку свойственна систематическая ошибка наблюдателя. На протяжении последующих пятидесяти лет европейские астрономы только и делали, что измеряли величину погрешности своих наблюдений и сравнивали результаты между собой, безуспешно пытаясь нащупать причину ошибки.
А корень зла следовало искать в самой физиологии человека – «неудачной характеристике нервной системы астронома», как заключил Хирш в 1862 году. Через десять лет в ходе экспериментов немецкого физика и физиолога Германа Гельмгольца было установлено, что процессы восприятия, мышления и действия протекают не одномоментно; скорость человеческой мысли имеет пределы. Подвергая различные части тела добровольца слабому воздействию электротока, Гельмгольц определил продолжительность времени, которое требовалось организму для генерации ответа на раздражитель, который испытуемый отмечал кивком головы. Хотя скорость реакции варьировала в широких пределах, однако в свете обобщенных данных расчетов Гельмгольца стало ясно, что нервные импульсы человека распространяются со скоростью около 36 метров в секунду, что намного меньше результата в 14 миллионов километров в секунду, полученного другими исследователями. Гельмгольц сравнивал человеческие нервы с телеграфными кабелями, «пересылающими сообщения с далеких окраин в центр управления страной». Передача данных занимает некоторое время, которое расходуется на осознание раздражителя и генерацию ответа, а между делом – заодно и на «восприятие мозгом полученной информации и волевое побуждение», как писал Гельмгольц. По его оценкам, фаза восприятия и волевого побуждения длится около 0,1 секунды.
Уже знакомый нам астроном Хирш называл данный интервал «психологическим временем», подозревая, что именно оно в ответе за систематическую ошибку наблюдателя, и провел серию экспериментов для прояснения вопроса. Во время одного из опытов на доску с грохотом падал стальной шар; услышав звук падения, испытуемый должен был надавить на телеграфный ключ. Хирш замерял продолжительность времени между звуком и ударом телеграфного ключа при помощи хроноскопа – специального устройства, способного определять интервалы времени с точностью до секунды, прибавляя к расчету примерно половину скорости нервного импульса, установленной Гельмгольцем. Хроноскоп, изобретенный несколькими годами ранее часовым мастером Маттиасом Хиппом, который позже принял участие в опытах Хирша в качестве добровольца, изначально предназначался для измерения скорости вылета ружейной дроби и падающих объектов. Впоследствии Хипп занял пост директора швейцарской телеграфной службы, а в 1860 году ушел в отставку и основал собственную телеграфную компанию в Невшателе, которая занималась в том числе и поставками оборудования для нового эксперимента в области передачи временных сигналов, затеянного Хиршем. Теперь ученый проводил опыты при помощи хитроумного приспособления, изображавшего прохождение искусственных звезд через линии меридианного инструмента. По предположению экспериментатора, систематическая ошибка наблюдателя варьировала не только от человека к человеку, но и от одного наблюдения к другому в течение дня и на протяжении года; также ее значения могли изменяться в зависимости от яркости звезды и направления ее движения. Если определению времени прохождения звезды через меридиан вместо спокойного ожидания нужного момента предшествовало мысленное представление момента пересечения линии меридиана, значение систематической ошибки наблюдателя также изменялось.
Вскоре астрономы научились минимизировать влияние систематической ошибки наблюдателя за счет устранения личностного компонента в астрономических наблюдениях: прием сигналов времени способом «глаз и ухо» уступил место электрохронографу – вращающемуся барабану бумаги, закрепленному прямо на корпусе часов. Отмечая транзит звезды, астроном нажимал на телеграфный ключ и проставлял на бумаге отметку, избавляясь от необходимости сверяться с часами и даже думать о них, в результате которой регистрация времени происходила с задержкой, обусловленной индивидуальными особенностями восприятия. Теперь два астронома могли рассчитывать на объективные результаты сравнения погрешностей измерений, полученных при использовании одних и тех же часов. Даже находясь в разных обсерваториях, расположенных на расстоянии нескольких километров друг от друга, ученые могли одновременно фиксировать прохождение той или иной звезды по меридиану, сверяясь с одними и теми же часами по телеграфу (после поправки на скорость передачи телеграфных сообщений), а затем рассчитать величину расхождения в результатах.
ПО СУТИ, ЧАСЫ ПРЕДСТАВЛЯЮТ СОБОЙ ИНДИКАТОР ВРЕМЕНИ, ОПРЕДЕЛЯЮЩИЙ МОЕ МЕСТОПОЛОЖЕНИЕ МЕЖДУ НЕДАВНИМ ПРОШЕДШИМ И БЛИЖАЙШИМ БУДУЩИМ
Однако феномен систематической ошибки наблюдателя все равно не остался незамеченным; вслед за астрономами изучением времени занялись физиологи и психологи. Опубликованная в 1862 году статья Хирша, посвященная проблеме «психологического времени», была переведена с немецкого на многие языки мира и приобрела широкую известность в научных кругах. Экспериментальный проект по изучению восприятия времени астрономами лег в основу одного из последующих опытов Вундта по оценке протяженности времени в сознании. Также отмечался рост интереса к исследованиям скорости реакции. В 1926 и 1927 годах Бернис Грэйвс, футбольный тренер и по совместительству соискатель степени магистра психологии в Стэнфорде, проводил исследование скорости реакции игроков стэнфордской футбольной команды под руководством психолога Уолтера Майлса и тренера команды Гленна Уорнера по прозвищу «Поп». Центральную роль в исследовании сыграло хронометражное устройство, изобретенное Майлсом, которое должно было показаться знакомым Хиршу. Сам Майлс именовал свое изобретение «множественным хронографом», поскольку его можно было одновременно подключить к семи линейным игрокам с целью определения скорости линейной атаки после команды квотербека разыграть мяч. Участники эксперимента долгое время спорили между собой, какой способ подачи сигнала лучше. В итоге аргументация в поддержку звукового сигнала, при котором квотербек раздает игрокам подробные инструкции, произнося вслух определенную последовательнось цифр, за которой следует громкая команда «Пошел!», превысила доводы в пользу визуальной коммуникации, при которой нападающие линейные игроки ориентируются на защитников, выстроенных в линию напротив них. Однако оставалось неясным, должен ли возглас «Пошел!» застать линейных игроков врасплох или, напротив, следует оповестить их заранее? Каким должен быть ритм подачи сигналов – ровным или изменчивым? Тестируя хронометражное устройство Майлса, Грэйвс испробовал все возможные варианты. Стоя в стойке с тремя точками контакта, каждый форвард держал голову на пусковом механизме хронометра; движения игрока, услышавшего сигнал, приводили в действие пусковое устройство: на вращающийся барабан падал мяч для гольфа, оставляющий отметку на бумаге. Скорость реакции измерялась в тысячных долях секунды. Грэйвс обнаружил, что игроки сходили с линии более синхронно, если сигнал подавался внезапно и неритмично; при ожидаемой и ритмичной подаче сигнала игроки переходили в атаку на десятую долю секунды быстрее – примерно столько времени требуется человеку на обдумывание решения. «Синхронное выполнение резких и точных движений – одна из главных целей, которую преследует тренер и отрабатывают игроки, – заметил Майлс. – Необходимы большие усилия, чтобы сформировать из одиннадцати человек с разными типами нервной системы мощный слаженный механизм».
Возвращаясь из небольшого продуктового магазина обратно в офис после ланча, я бросил мимолетный взгляд на часы, установленные на высоком пьедестале возле здания банка. Формой они отчасти напоминают огромный морской компас, и внезапно я обнаружил, что часы предпринимают деликатные попытки сориентировать меня не только во времени, но и в других аспектах бытия.
В действительности не только эти часы, но и всякие другие – к примеру, электронные часы в моем сотовом телефоне, настольные у изголовья кровати или наручные, которые я иногда надеваю, – могут рассказать о времени немало интересного. По сути, часы представляют собой индикатор времени, определяющий мое местоположение между недавним прошедшим и ближайшим будущим. «Сейчас девять часов, – заметил философ Мартин Хайдеггер, – это первая фраза, которую я произношу, вынимая из кармана часы. Значит, с тех пор, как случилось то-то и то-то, прошло тридцать минут. Еще через три часа будет двенадцать». Иными словами, часы служат ориентиром относительно прошлого и будущего, а их задача, по выражению Хайдеггера, заключается в «определении точного момента фиксации настоящего», которое представляется нам движущейся мишенью.
НАШЕ ВОСПРИЯТИЕ ВРЕМЕНИ КОНСТРУИРУЕТСЯ ИЗ ОПРЕДЕЛЕННЫХ ЕДИНИЦ, КАЖДАЯ ИЗ КОТОРЫХ ПРЕДСТАВЛЯЕТ СОБОЙ ДЛИТЕЛЬНОСТЬ С ЧЕТКО РАЗЛИЧИМЫМ НАЧАЛОМ И КОНЦОМ
Однако миг осознания пробуждения как вхождения в настоящее оказался настолько важным, что Уэринг отмечает их в дневнике, постоянно делая новые записи. Отмечая в дневнике время пробуждения, к примеру 10:50, он тут же записывает свои ощущения: «Мое первое пробуждение!» Потом он обнаруживает похожую фразу строкой выше, сделанную несколькими минутами раньше, сверяется с наручными часами, вычеркивает предыдущую запись, как будто ее сделал не он сам, а какой-то проходимец, подчеркивает только что записанные строки. Целые страницы исписаны подобными пометками, и каждая из них, кроме последней, перечеркнута. На сегодняшний день дневник Уэринга, если его можно так назвать, насчитывает тысячи страниц и десятки томов, и каждый миг пробуждения утверждает свое превосходство над предыдущим.
14:10. Сейчас я по-настоящему проснулся…
14:14. В этот раз я проснулся окончательно…
14:35. Теперь я пробудился полностью…
21:40. Я проснулся в первый раз, несмотря на предыдущие заявления.
И я проснулся как следует в 8:47.
А полностью пробудился – в 8:49, осознав, насколько трудно окружающим меня понять.
* * *
Решив занять гостей во время обеда, герой фантастического романа Г. Дж. Уэллса «Машина времени», которого автор предлагает называть Путешественником по Времени, рассказывает, как он изобрел устройство для перемещений во времени. Ранее, всего за несколько минут до встречи с изнеженными элоями и звероподобными морлоками в 802 701 году, до высадки на безжизненном побережье около тридцати миллионов лет спустя, до появления измученного жаждой героя в гостиной, он сел в кресло своей машины, рванул на себя рычаг и «унесся в будущее».
«Сразу наступила темнота, как будто потушили лампу, но в следующее же мгновение вновь стало светло. Я неясно различал лабораторию, которая становилась все более и более туманной. Вдруг наступила ночь, затем снова день, снова ночь и так далее, все быстрее. У меня шумело в ушах, и странное ощущение падения стало сильнее.
…Пока я мчался таким образом, ночи сменялись днями, подобно взмахам крыльев. Скоро смутные очертания моей лаборатории исчезли, и я увидел солнце, каждую минуту делавшее скачок по небу от востока до запада, и каждую минуту наступал новый день… Самая медленная из улиток двигалась для меня слишком быстро… Я видел, как деревья вырастали и изменяли форму подобно клубам дыма: то желтея, то зеленея, они росли, увеличивались и исчезали. Я видел, как огромные великолепные здания появлялись и таяли, словно сновидения. Вся поверхность земли изменялась на моих глазах… Я пролетал более года в минуту, и каждую минуту снег покрывал землю и сменялся яркой весенней зеленью»[41].
Роман «Машина времени» был издан в 1895 году, когда тема путешествий во времени активно муссировалась литераторами. Перемещения в будущее и в прошлое, как правило, происходили внезапно, по милости неведомых сил. Заглавные персонажи романов «Оглядываясь назад» или «Вести ниоткуда» засыпали в XIX веке, а затем пробуждались от долгого сна уже в XXI веке.
В «Хрустальном веке» путешественник приходит в сознание спустя тысячу лет после падения со скалы, в чем он абсолютно уверен. В «Британских варварах» антрополог из XXV века однажды приезжает в Суррей в «хорошо скроенном сером твидовом костюме». «Машина времени» примечательна тем, что способ перемещения во времени, как и само по себе время, становится одним из самых интригующих моментов сюжета. Путешественник по Времени – не пассивный заложник обстоятельств; в ситуации выбора он самостоятельно определяет цели дальнейших действий. Кроме того, он не просто очутился в будущем, а с нарастающей скоростью прорывается через каждое мгновение между «сейчас» и «тогда». В его руках время исчисляемо и физически измеряемо; видимое воочию настоящее расширяется, вбирая в себя времена года, человеческие жизни и геологические эпохи. Воспринимаемое настоящее значит не более того, чем по сути является – восприятием времени. Изменяя свое восприятие времени, путешественник изменяет само время.
Уэллс уверенно ориентировался в научных воззрениях тех лет. В университетские годы он изучал биологию под руководством Т. Г. Хаксли, и он, конечно же, читал «Принципы психологии» Джеймса, как и все люди его круга. В 1894 году газета Saturday Review опубликовала критический обзор психологических теорий того времени – работу Уэллса, за которой стояло основательное изучение литературы, посвященной проблемам памяти, сознания, зрительного восприятия, внушения и иллюзий. (Один из нынешних ученых, изучив хронологию мира «Машины времени», пришел к ошеломительному выводу, что Путешественник по Времени попросту разыграл своих гостей, когда за обедом поведал им о своих странствиях. По его мнению, вся история с перемещением в будущее приснилась главному герою, когда после долгой прогулки на трехколесном велосипеде по окрестностям его сморил полуденный сон.) Первая глава романа в действительности представляет собой краткое разъяснение актуальных представлений о восприятии времени. «Единственное различие между Временем и любым из трех пространственных измерений заключается в том, что наше сознание движется по нему», – говорит Путешественник по Времени своим гостям, а затем принимается развивать собственную теорию времени в терминах геометрии четырех измерений, которую Уэллс, вероятно, позаимствовал из лекции Нью-Йоркского математического общества, прочитанной в 1893 году. «Вы никогда не уйдете от настоящего момента», – возражает один из гостей, на что Путешественник по Времени отвечает: «Мы постоянно уходим от настоящего момента». При отправке модели машины времени в первое путешествие во времени на пусковой рычаг нажимает не кто иной, как Психолог.
За Уильямом Джеймсом водилась привычка делать записи по поводу прочитанного, но в бумагах ученого нет ни одного упоминания о «Машине времени», хотя круг его литературных предпочтений был на редкость широк – от Блаженного Августина до «Доктора Джекилла и мистера Хайда» («Это настоящий волшебник», – писал ученый о Р. Л. Стивенсоне). В переписке с Уэллсом Джеймс похвально отзывается о философских эссе «Утопия» и «Первое и последнее», сравнивая дарование автора с талантом Киплинга и Толстого; Уэллс, в свою очередь, активно внимал прагматической философии Джеймса и называл его «своим другом и наставником». По одной из версий, в 1899 году Джеймс и Уэллс пересеклись на вечеринке в доме Стивена Крэйна, когда игра в покер до поздней ночи плавно перетекла в ланч и посиделки за пивом. Биограф Джеймса Ричардсон описывает случай, имевший место несколько лет спустя, когда Уэллс навещал Джеймса, гостившего у брата Генри, который проживал в Англии. Генри пришел в восторг, застав Уильяма на лестнице в саду: ученый то и дело заглядывал за изгородь, надеясь хотя бы одним глазом увидеть Г. К. Честертона: в те дни романист остановился в гостинице, располагавшейся в соседнем здании. «До такого точно еще никто не додумался – это было попросту не принято», – позже вспоминал Уэллс.
Впрочем, Джеймс постоянно делал то, до чего никто другой бы не додумался. Вскарабкаться на лестницу, не раздумывая, – вполне в его импульсивном характере; его не остановила бы даже острая нехватка времени. Впоследствии ученый забирался на лестницу еще два или три раза. «Он постоянно торопился», – сообщил мне Ричардсон, ссылаясь на автобиографический роман Генри Джеймса «Маленький мальчик и другие», опубликованный в 1913 году, спустя три года после довольно ранней смерти Уильяма – в возрасте шестидесяти восьми лет. Генри писал, что его брат то и дело «исчезал за углом и терялся из виду», метафорически передавая свое восприятие их разницы в возрасте (Уильям был на год старше), однако эти слова вполне применимы к Уильяму и в буквальном смысле. «Он отличался очень живым характером, все время был „на взводе“ и постоянно балансировал на грани нервного срыва, – характеризует Ричардсон своего героя. – Полагаю, он чувствовал, что ему отпущено совсем немного времени. В сущности, так оно и было».
Однажды вечером на исходе лета 1860 года в Санкт-Петербурге состоялось первое собрание Русского энтомологического общества. Кульминацией программы должен был стать доклад досточтимого немецкого зоолога Карла Эрнста фон Бэра, вошедшего в историю науки главным образом благодаря дотошной критике дарвинистского тезиса о происхождении всех живых организмов от единых предков. Сам Дарвин глубоко восхищался Бэром, воздавая должное его могучему интеллекту, незаурядному таланту наблюдателя и революционным открытиям в биологии. Бэр одним из первых выдвинул теорию о развитии из яйца всех млекопитающих, включая человека. К такому выводу ученый пришел, скрупулезно исследуя сотни крошечных бесформенных эмбрионов кур и других видов под микроскопом и не переставая удивляться бесконечному разнообразию организмов, происходящих от похожих зачаточных форм.
Тема доклада Бэра была сформулирована в форме вопроса: «Welche Auffassung der lebenden Natur ist die richtige? Und wie ist diese Auffassung auf die Entomologie anzuwenden?», или: «Какое представление о сущности живого следует считать правильным и насколько оно применимо к энтомологии?» Возможно, для массовой аудитории тема покажется странной и трудной для понимания, а для собрания любителей насекомых и подавно. Но в ходе своего выступления фон Бэр затронул проблему, которая имела хождение среди философов еще с XVII века, а с недавних пор попала в поле зрения естественной науки: как долго длится настоящий момент?
ВОСПРИЯТИЕ ТЕЧЕНИЯ ВРЕМЕНИ ОТНОСИТЕЛЬНО: ОДИН И ТОТ ЖЕ ОТРЕЗОК ВРЕМЕНИ ДЛЯ КОГО-ТО СЖИМАЕТСЯ В ОДИН МИГ, А ДЛЯ КОГО-ТО РАСТЯГИВАЕТСЯ НА НЕСКОЛЬКО
Ничто не длится постоянно, сообщил Бэр своим слушателям. Мы по ошибке принимаем за постоянство мнимую незыблемость гор и морей, но в действительности это всего лишь иллюзия, обусловленная короткой продолжительностью нашей жизни. Вообразите на мгновение, что течение человеческой жизни резко ускорилось или замедлилось – «очевидно, что тогда все законы природы предстанут в совершенно ином свете, по крайней мере для непосредственного наблюдателя». Предположим, что вся человеческая жизнь, от рождения до глубокой старости, длится всего двадцать девять дней – одну тысячную ее нормальной продолжительности. Такой Monaten-Mensch, или «одномесячный человек», никогда не увидит полного цикла луны, поэтому понятие времен года, снега и льда будет для него такой же абстракцией, как для нас ледниковый период. Так живут многие существа, включая некоторые виды насекомых и грибов, срок жизни которых составляет всего несколько дней. Теперь представьте, что продолжительность жизни человека сократится еще в тысячу раз и составит лишь сорок две минуты. Перед нами окажется Minuten-Mensch, или «минутный человек», которому неведома смена дня и ночи, а деревья и цветы видятся неизменными.
Теперь рассмотрим противоположный сценарий, продолжал Бэр. Давайте представим, что наш пульс не ускорился, а замедлился в тысячу раз по сравнению с нормальной частотой пульса. Если предположить, что объем чувственных впечатлений пропорционален числу ударов пульса, то «проживая жизнь в своем ритме, такой человек достигнет преклонного возраста, прожив около 80 000 лет. Год в его представлении будет равен 8,75 часа. В таком случае мы бы перестали замечать таяние снега, подземные толчки, набухание почек на деревьях, медленное созревание плодов и листопад». Мы могли бы наблюдать, как поднимаются и рушатся горные цепи, но существование божьей коровки оставалось бы незамеченным. Точно так же были бы потеряны для нас цветы, только у деревьев оставался бы шанс произвести на нас впечатление, а солнце, должно быть, оставляло бы за собой шлейф на небосводе, как комета или пушечное ядро. Теперь продлим жизнь человека еще в тысячу раз, и ее продолжительность достигнет 80 миллионов лет, но частота пульса при этом будет равна всего 31,5 удара за земной год, а количество актов восприятия соответственно снизится до 189. Солнце из четко очерченного диска превратится в сверкающий эллипс, чуть тускнеющий зимой. В течение десяти ударов пульса в календарный год Земля покажется зеленой, на протяжении следующих десяти ударов – белой, а таяние снега будет происходить за полтора сердечных такта.
Распространение микроскопов и телескопов в XVII–XVIII веках породило поток рассуждений об относительности величин. В обоих направлениях космос оказался намного больше и изобильнее, чем представлялось ранее, человеческая перспектива начала терять чувство исключительности: наше видение мира оказалось лишь одним из множества возможных. Предположим, рассуждал философ Николя Мальбранш в 1678 году, что Бог сотворил мир настолько огромный, что отдельное дерево, произрастающее в нем, покажется нам гигантским, хотя в глазах жителей того мира оно будет выглядеть вполне нормальным. Также можно вообразить и другой мир, который кажется нам крошечным, однако в глазах его крошечных обитателей разворачивается во всю ширь. «Car rien n’est grand ni petit en soi», – писал Мальбранш; вещи не малы и не велики ни сами по себе, ни за своими пределами. Вскоре Джонатан Свифт отобразил идеи Мальбранша в своих романах: мироощущение лилипутов и великанов из страны Бробдингнег равнозначно по объему и степени детализации.
Так и со временем. «Представьте себе мир величиной с орех, который вмещает такое же множество вещей, как и наш, – писал французский философ Этьен Бонно де Кондильяк в 1754 году. – Не подлежит сомнению, что звезды в таком мире будут восходить и заходить над небосклоном тысячи раз за отрезок времени, который в нашем представлении равен часу». Сила воображения также может создать мир необъятных масштабов, по сравнению с которым наш мир покажется ничтожно малым: в глазах существ, населяющих мир гигантского размаха, жизнь человека не более чем вспышка, но для жителей планеты Орех наши жизни длятся миллиарды лет. Восприятие течения времени относительно: один и тот же отрезок времени для кого-то сжимается в один миг, а для кого-то растягивается на несколько мгновений.
Безусловно, все эти измышления – в некоторой степени игра слов. Определяя день как период полного обращения Земли вокруг своей оси, мы будем вынуждены признать, что продолжительность суток одинакова для всех – для людей, коротышек и орехов. Хронобиолог не преминул бы заметить, что ощущение суточного ритма закреплено в нас на генетическом уровне независимо от того, сознаем мы это или нет. Однако, с точки зрения Кондильяка, для коротышек, населяющих планету Орех, такая единица времени, как сутки, не несет никакой практической ценности и едва ли осязаема. Рассуждения французского философа отображают представления о времени, которые и сейчас в ходу: оценка длительности текущего момента определяется количеством действий и идей, проходящих через сознание в течение его развертывания. «Мы воспринимаем продолжительность, только рассматривая цепь чередующихся в нашем разуме идей»[42], – утверждал Джон Локк в 1690 году. Если вы получили много впечатлений за короткий период, тогда длительность времени, наполненного ощущениями, будет казаться большей, пока вы ее проживаете. Мгновение может восприниматься нами как ничтожно малое, хотя, согласно Локку, не исключено, что найдутся и другие умы, способные осязать его иначе, но нам известно о них так же мало, «как мало знает запертый в ящике стола червяк о чувствах и разуме человека»[43]. Наш разум, движущийся с постоянной скоростью, способен вместить лишь то количество идей, которые мы можем воспринять за единицу времени. «Если бы наши чувства изменились и стали гораздо живее и острее, внешний вид и облик вещей был бы для нас совершенно иным»[44].
Уильям Джеймс взял на вооружение идеи Локка. Если чувственное восприятие изменено в результате употребления гашиша, писал он в 1886 году, есть вероятность взглянуть на течение времени иначе, с позиции короткоживущих созданий фон Бэра и Спенсера. Коротко говоря, восприятие мира в измененном состоянии сознания в точности напоминает расширение пространства под микроскопом: в поле зрения попадает меньше реальных объектов, но каждый из них занимает намного больше места, чем обычно, за счет чего отдельные предметы кажутся неестественно отдаленными. В 1901 году Г. Дж. Уэллс написал короткий рассказ под названием «Новейший ускоритель», в котором говорилось об изобретении эликсира, ускоряющего процессы жизнедеятельности и восприятия в тысячу раз. Отведав эликсира-ускорителя, попробуйте опрокинуть стакан, и вам покажется, будто он завис в воздухе, а прохожие на улицах покажутся «застывшими восковыми фигурами». «Наша задача – изготовить и продавать „ускоритель“, а что из этого выйдет – посмотрим»[45], – подытоживает Уэллс. Хотя мы мало осознаем это, но человек одновременно пребывает в нескольких измерениях времени. Человеческое сердце в среднем совершает один удар в секунду. Разряд молнии длится одну сотую секунды. На исполнение единичной команды программного обеспечения домашний компьютер затрачивает несколько наносекунд – миллиардных долей секунды. Время переключения между схемами исчисляется пикосекундами – триллионными долями секунды. Несколько лет назад физикам удалось получить вспышку лазерного излучения длительностью всего пять фемтосекунд, или пять квадриллионных долей (5Ч10–15) секунды. В повседневной практике фотографии вспышка фотокамеры «останавливает время» со скоростью в одну тысячную секунды, достаточно быстро, чтобы запечатлеть размах бейсбольной биты, если не получается заснять ускоренный полет мяча. Аналогично благодаря фемтосекундному импульсу лазерной «лампы-вспышки» ученые получили возможность непосредственно наблюдать явления, которые ранее не удавалось запечатлеть стоп-кадром: колебания молекул, создание межатомных связей в ходе химических реакций и другие феномены микромира, протекающие с невероятной скоростью.
На основе фемтосекундного импульса разработан ряд мощных инструментов. Фемтосекундный импульс незаменим при бурении микроскважин, так как за счет быстрого поглощения энергии разряда не происходит нагрева среды и, как следствие, возрастает КПД устройства и уменьшается количество отходов. Также, с учетом скорости распространения света (чуть меньше трехсот миллионов метров в секунду), длина волны фемтосекундного светового импульса равна одной тысячной миллиметра. (Для сравнения: длина волны светового импульса длительностью в одну секунду составляет три четверти расстояния от Земли до Луны.) Фемтосекундные импульсы можно уподобить крошечным, но «умным» бомбам, которые могут использоваться для нанесения точечных ударов непосредственно под поверхностью светопроницаемой среды, без повреждения верхнего слоя. Разработки в области применения фемтосекундных импульсов при травлении оптических волноводов в стеклопанелях потенциально способны совершить переворот в телекоммуникациях и технологиях сохранения данных. Кроме того, исследователи фемтосекундных импульсов открыли новый метод в лазерной микрохирургии глаза, позволяющий производить хирургические манипуляции на роговице, не травмируя ткани, расположенные над ней. «Таким образом можно проникнуть внутрь любой биологической среды с минимальными затратами энергии», – объяснил мне Пол Коркум, физик из Института молекулярных исследований имени Эдгарда Стиси в Оттаве, Канада, и один из ведущих специалистов проекта.
Однако даже запредельной скорости все еще недостаточно. Между первой и второй квадриллионной долей секунды разворачиваются процессы первостепенной важности, так что недостаточная скорость импульсной лампы может привести к тому, что вы их попросту упустите. Поэтому ученые вложили в проект максимум усилий и трудились от звонка до звонка, спеша создать еще меньшие временные окна для изучения материального мира. Несколько лет назад одна международная исследовательская группа физиков наконец-то преуспела в попытках преодоления так называемого фемтосекундного барьера. При помощи сложного высокоэнергетического лазера был получен световой импульс длительностью чуть более половины фемтосекунды, а именно 650 аттосекунд, если выразиться точнее. Долгое время аттосекунда (10–18 секунды) существовала исключительно в виде теоретической единицы измерения времени, но в этот раз ей впервые нашлось практическое применение. Новообретенный временной интервал совсем невелик, однако его потенциал способен развернуться в раблезианских масштабах. «В лице новой единицы времени мы приобрели реалистичную временную шкалу для описания процессов, происходящих внутри материи, – уверяет Коркум. – Мы получили возможность исследовать микромир атомов и молекул в его системе координат».
АТТОСЕКУНДЫ ПОДАРЯТ НАМ НОВЫЙ ВЗГЛЯД НА ЭЛЕКТРОНЫ. ОНИ СТАЛИ НОВОЙ МЕРОЙ ВЕЩЕСТВА, КОТОРАЯ ВПОСЛЕДСТВИИ РАСПРОСТРАНИТСЯ НА ВСЕ НАУКИ. НАЧАЛАСЬ ЭПОХА АТТОФИЗИКИ
Практическая ценность аттосекундного импульса была продемонстрирована едва ли не в момент получения. Физики направили аттосекундный импульс в сопровождении более продолжительного импульса красного излучения на порцию атомарного криптона. Аттосекундный разряд привел атомы криптона в возбужденное состояние, выбив из орбиталей несколько электронов, после чего через высвобожденные электроны пропускался импульс красного излучения, определяя уровень их энергии. Скорректировав интервал между прохождением импульсов, ученые добились исключительной точности измерений периода распада электронов с погрешностью до аттосекунд. До сих пор изучение динамики электронов в столь краткосрочном временном масштабе не представлялось возможным. Так или иначе, эксперимент наделал шума в мире физики. «Аттосекунды подарят нам новый взгляд на электроны, – сообщил мне физик Луис Ди-Мауро, сотрудник Брукхейвенской национальной лаборатории. – Они стали новой мерой вещества, которая впоследствии распространится на все науки. Началась эпоха аттофизики».
Само собой, однажды, возможно даже и в ближайшем будущем, настанет момент, когда и аттосекунды перестанут удовлетворять запросы науки. Для проникновения в суть процессов, происходящих внутри атомного ядра, применительно к которым естественное течение времени ускоряется на порядки, физикам придется научиться мыслить в категориях зептосекунд или даже секстиллионных долей секунды. В то же время ученым еще предстоит обработать полученные данные в предельно сжатые сроки. Можно вообразить, с каким энтузиазмом они примутся заполнять жесткие диски домашних компьютеров любительской съемкой электронов и забивать эфир видеороликами, записанными в аттосекундах, которые будут зависать на секунды, кажущиеся вечностью. Впрочем, Коркум убежден, что этого не случится. «В действительности мы рассматриваем только приемлемые единицы времени». По его словам, в краткосрочной перспективе, как и в долгосрочной, мера терпения зрителя устанавливает ограничения при подборе единиц времени. «Мой шурин недавно переслал мне видеоролики, в которых фигурировал их ребенок, – рассказывает Коркум. – Сначала было забавно их просматривать, но после пятнадцати минут просмотра я спохватился: видео непозволительно затянулось».
* * *
В молодости, когда у меня было больше свободного времени, летом мне нравилось лежать на траве с закрытыми глазами и подсчитывать, сколько звуков я могу услышать одновременно. С одной стороны стрекочут цикады. С высоты небес доносится отдаленный рев реактивного самолета. Сзади шелестит листва, встревоженная легким дуновением ветра. Некоторые звуки постоянно находились рядом, другие возникали и утихали, как, скажем, крик голубой сойки. Впоследствии я обнаружил, что удерживаю в уме не более четырех-пяти одновременно, после чего какой-то из них выпадает из внимания, и даже определил, в какой момент один звук, записанный в моей памяти, сменяется другим, и чувствовал себя жонглером, который только что упустил один из мячей и тут же ловит другой взамен упущенного. Ранее я мог подолгу заниматься подсчетом удержавшихся и ускользнувших из внимания звуков, однако позже предпочел сосредоточиться не столько на количестве воспринимаемых в одночасье звуков, сколько на объеме внимания, поглощенного каждым звуком, а также на величине усилия, необходимого для сохранения звуков в поле восприятия.
Концентрация внимания на звуках природы помогала мне расслабиться и в то же время служила методом измерения… чего? Я так толком и не понял, чего именно. Объема внимания? Степени осознанности? Задним числом я понимаю, что так я пытался определить длительность текущего момента доступным мне примитивным способом, предпринимая попытку за попыткой. Задолго до того, как Уильям Джеймс с подачи Э. Р. Клэя ввел понятие «видимое воочию настоящее», большинство ученых соглашалось с тем, что психологическое настоящее имеет фактическую протяженность во времени, и прилагали невероятные усилия, стараясь определить его длительность. Насколько долго длится «сейчас»?
Одна из техник измерения длительности настоящего предполагала подсчет единиц ментальной информации, наполняющих текущее мгновение. С ролью счетчиков хорошо справлялись ритмические сигналы. Представьте себе последовательность ударов, следующих примерно в таком ритме: тикетта-тик-тик-тик, тикетта-тик-тик-тик и так далее. Если отдельные такты запаздывают или спешат, ритм становится неразличимым; разум связывает удары в единое целое только при подаче звуковых сигналов в определенном промежуточном диапазоне скорости, исчисляемом количеством тактов, воспринимаемых за секунду или за минуту времени. Иными словами, ощущение ритма появляется только при условии, что достаточное, но не слишком большое число отдельных тактов подается в течение кратковременного периода сосредоточения, длительность которого может незначительно варьировать. Характеризуя короткий промежуток времени, в течение которого из разрозненных впечатлений формируется ощущение текущего момента, немецкий психолог Вильгельм Вундт прибегал к терминам «охват сознания» или «поле озарения» (Blickfield). В 1870-х годах ученый предпринял попытку определить его параметры. В одном из экспериментов проигрывался звуковой ряд в числе шестнадцати тактов – по восемь пар ударов с частотой один к одному с половиной такта в секунду. Продолжительность «поля озарения» определялась между 10,6 и 16 секундами. Последовательность звуков проигрывалась дважды с короткой паузой между повторами. Участники эксперимента сразу определяли ритм и указывали на идентичность двух ритмичных звукорядов. Если к звуковому ряду длительностью в секунду прибавлялся один такт или, напротив, изымался один такт, слушатель немедленно замечал перемену, даже не подсчитывая ударов. Все участники опыта сознавали общий мотив звукоряда; каждый проигранный ритм, как отмечал Вундт, «сознается как единое целое». Впоследствии ритм ускорился: в следующий раз проигрывалось уже двенадцать отдельных тактов с периодичностью в полсекунды к трети секунды, однако подопытные по-прежнему улавливали единый ритмический рисунок звукоряда, сравнивая один отзвучавший ритм с другим. В результате было установлено, что воспринимаемое настоящее длится от четырех до шести секунд. Человеческий мозг в одночасье распознает до сорока тактов при подаче сигналов пятью пакетами по восемь тактов в каждом с частотой четыре удара в секунду. Таким образом, допустимый диапазон сознательного восприятия звука составляет десять секунд. Кратчайшая длительность звука, доступная восприятию, насчитывала двенадцать тактов, распределенных на три группы по четыре удара, подававшихся со скоростью три такта в секунду. Продолжительность звучания составила четыре секунды.
ОЩУЩЕНИЕ РИТМА ПОЯВЛЯЕТСЯ ТОЛЬКО ПРИ УСЛОВИИ, ЧТО ДОСТАТОЧНОЕ, НО НЕ СЛИШКОМ БОЛЬШОЕ ЧИСЛО ОТДЕЛЬНЫХ ТАКТОВ ПОДАЕТСЯ В ТЕЧЕНИЕ КРАТКОВРЕМЕННОГО ПЕРИОДА СОСРЕДОТОЧЕНИЯ
По другим данным, длительность воспринимаемого настоящего оказалась намного короче. В 1873 году австрийский психолог Зигмунд Экснер заявил, что способен услышать два последовательных щелчка искрового разряда, следующих друг за другом с интервалом в 0,002 секунды. Если участники опыта Вундта судили о длительности настоящего по содержанию заполненного текущего момента, то Экснер определял границы ничем не заполненных мгновений. Определяя длительность настоящего, Экснер обнаружил, что результат в значительной степени зависит от чувств, испытываемых человеком в это время. Возможности слуха открывают доступ к кратчайшему воспринимаемому интервалу протяженностью 0,002 секунды. Зрение функционирует более медленно: наблюдая две последовательные вспышки искрового разряда, следующие друг за другом с небольшим перерывом, Экснер мог достоверно отличить первую вспышку от второй только в тех случаях, когда продолжительность паузы между вспышками составляла более 0,045 секунды – чуть меньше одной двадцатой секунды. Если по условиям эксперимента звук предшествовал световой вспышке, продолжительность интервала между сигналами, необходимого для определения порядка их следования, увеличивалась до 0,06 секунды. Кратчайшая длительность интервала при противоположной задаче, когда вспышка предшествовала звуку, оказалась еще длиннее – 0,16 секунды.
Через несколько лет, в 1868 году, немецкий врач Карл фон Фирордт предложил другой способ определения продолжительности настоящего момента. В опытах Фирордта испытуемым предлагалось прослушать пустой интервал, как правило, обозначаемый двумя щелчками метронома, а затем попытаться воспроизвести его, нажимая кнопку, которая приводила в действие механизм, проставляющий отметку на вращающемся барабане бумаги. Иногда промежуток времени, который следовало воспроизвести, обозначался восемью ударами метронома, а не двумя, либо два удара отстукивали по руке испытуемого небольшой стальной указкой. Анализируя полученные данные, Фирордт заметил любопытную деталь: промежутки времени длительностью менее одной секунды обычно воспринимались как более продолжительные, а продолжительность более длительных интервалов, напротив, недооценивалась. Промежуточное положение занимали короткие отрезки времени, длительность которых оценивалась точно. Путем многократного повторения экспериментов Фирордту удалось конкретизировать длительность кратковременного интервала, в течение которого субъективное ощущение течения времени точно совпадало с объективным. Характеристики показателя, который ученый назвал точкой безразличия, варьировали от одного наблюдателя к другому, однако усредненное значение, как утверждал Фирордт, оставалось постоянным и составляло порядка 0,75 секунды.
В настоящее время очевидно, что в процессе исследования допущено несколько методологических ошибок. Во-первых, почти все экспериментальные данные получены только от двух добровольцев – самого Фирордта и его лаборанта. Тем не менее точка безразличия была признана мерой того, что физиологи и психологи XIX века именовали чувством времени (Zeitsinn). Вундт и коллеги проводили собственные эксперименты по определению точки безразличия, пытаясь установить ее количественное значение и дать феномену четко сформулированное определение. Значения точки безразличия, полученные опытным путем, обычно колебались на уровне трех четвертей секунды, хотя отдельные показатели снижались до трети секунды. При более обстоятельном изучении выяснилось, что полученные в ходе эксперимента значения точки безразличия существенно расходились, но в конце концов ученые, по-видимому, обнаружили психологическую единицу времени – «некоторую абсолютную длительность», которая, как заметил один историк, «всегда присутствует в сознании, утверждая стандарт отсчета времени». Эта длительность, вне зависимости от точной продолжительности, выступает косвенным показателем осознанности восприятия времени, представляя собой кратчайший из возможных моментов сосредоточения внимания непосредственно на воспринимаемом объекте.
Наука подберется к точной продолжительности настоящего и даст интерпретацию полученным данным лишь в XX веке. На сегодняшний день усилия ученых сосредоточены на размежевании двух понятий. Первое характеризует воспринимаемое мгновение, длительность которого трудноуловима, но все же поддается количественному определению. Показателем длительности настоящего момента выступает наиболее продолжительный интервал между двумя событиями, следующими друг за другом, к примеру между парой вспышек искрового разряда, которые, однако, воспринимаются нами синхронно. Второе понятие затрагивает психологическую реальность настоящего – более длительный период, в течение которого происходит развертывание отдельного события, к примеру барабанной дроби. Длительность ощущаемого момента может составить и 90 секунд, и 4,5 миллисекунды, принимая какие угодно значения в пределах пятой и двадцатой доли секунды в зависимости от личности респондента и способа определения; психологическое настоящее может длиться от двух до трех секунд, или от четырех до семи секунд, или не более пяти секунд. Во всяком случае, группа специалистов по когнитивистике высказала предположение о существовании кванта времени – «абсолютной нижней границы разрешения во времени», числовое значение которой оценивается примерно в 4,5 миллисекунды.
К моменту публикации «Принципов психологии» в 1890 году Джеймс был уверен, что большая часть работы по установлению длительности настоящего уже позади. «Мы постоянно сознаем определенный промежуток времени – „видимое воочию настоящее“ – длительностью от нескольких секунд до одной минуты», – писал ученый. Дальнейшие исследования, «изматывающие и обескураживающие», получили уничижительную характеристику: «Новому поколению науки, всем этим философам призмы, маятника и хронографа, недостает широты мышления. Ими движет дух торговли, а не рыцарства». Джеймс расценивал новую фазу немецкого научного поиска как «психологию микроскопического масштаба», которая «подвергает терпение проверкам на прочность и едва ли могла бы появиться в стране, жители которой способны испытывать скуку». По его мнению, временем можно распорядиться и с большей пользой, а не монотонно долбить в одну точку до самой смерти.
* * *
Что бы ни говорили подобного рода эксперименты о присущей нам «интуиции времени», все открытия свидетельствуют о возрастающей точности механических хронометров. Ученые долгое время были озадачены загадкой «животного духа» и «нервных воздействий», которые приводят в действие мышцы и наделяют организм способностью двигаться, познавать мир и ощущать ход времени. Вместе с тем нервные импульсы, как их принято сейчас называть, распространяются со скоростью порядка 120 метров в секунду, или свыше 400 километров в час. Измерительные приборы XVIII века попросту не могли угнаться за ними. Тогда наука полагала, что действие незамедлительно следует за мысленным побуждением. Усовершенствование приборов для измерения времени в XIX веке, которому мы обязаны появлением маятниковых часов, хроноскопов, хронографов, кимографов и других устройств, большей частью позаимствованных у астрономов, открыло доступ к иным временным масштабам, исчисляемым десятыми, сотыми и даже тысячными долями секунды. Инструменты, предназначенные для исследования космоса, нашли применение в исследованиях физиологии, распахнув окно времени достаточно широко для обнаружения бессознательного.
До относительно недавнего времени, когда в обиход вошло атомное время, а точность показаний всемирного координированного времени достигла такого уровня совершенства, что их начали транслировать в новостных выпусках, сигналы точного времени для наших стационарных и наручных часов генерировали астрономические обсерватории, определявшие время по звездам. Проведите в небе воображаемую линию, связывающую север и юг строго по меридиональному направлению. Где бы вы ни находились, солнце каждый день будет проходить через небесный меридиан точно в полдень по местному времени. (Момент пересечения солнцем небесного меридиана известен как астрономический полдень.) Ночью звезды пересекают, а точнее, проходят через меридиан точно в одно и то же время; астрономы научились четко отслеживать прохождение каждой звезды через меридиан. Также по движению звезд можно сверять часы. Раньше часовые мастера и владельцы часов так и поступали: поначалу осаждали местных астрономов, а потом подписывались на уведомления служб точного времени, подконтрольных обсерваториям. В 1858 году в швейцарском городе Невшатель была построена обсерватория, предназначенная специально для обеспечения часовой индустрии сигналами точного времени. «Время будут доставлять прямо на дом, как воду или газ», – хвалился основатель обсерватории Адольф Хирш, занимавший должность главного астронома. Местные часовщики присылали свои стационарные и наручные часы в обсерваторию для проверки, калибровки и прохождения процедуры сертификации, утвержденной на официальном уровне. Часовые мастерские, расположенные далеко от обсерватории, ежедневно получали сигналы точного времени по телеграфу. К 1860 году, когда каждая телеграфная станция в Швейцарии получала сигналы точного времени из Невшателя, установился порядок, который Хеннинг Шмидген, историк и профессор теории медиа Веймарского университета «Баухаус», окрестил «обширным ландшафтом нормативного времени».
Конечно же, ни полдень, ни какое-либо иное время суток не наступает на Земле одновременно. Планета вращается вокруг своей оси, поэтому солнце не может светить нам всем одинаково в одно и то же время; когда в Нью-Йорке наступает полдень, в Гонконге уже полночь. Если двигаться на восток, вы заметите, что рассвет и закат, равно как и полдень, наступают немного раньше относительно отправной точки маршрута, а если двигаться на запад – то немного позже. С продвижением на каждые пятнадцать градусов восточной или западной долготы (при общем числе 360 градусов) наступление полудня соответственно сдвигается на час раньше или позже. При помощи телескопа и часов несложно произвести картирование мира по часовым поясам. Представьте себя в роли астронома Гринвичской обсерватории, расположенной на долготе 0°: если вам известно время прохождения той или иной звезды по нулевому меридиану, вы точно предскажете момент ее прохождения по меридиану 35° западной долготы, расположенному посередине Атлантического океана. А теперь мысленно переместитесь на борт того судна и определите точное время прохождения той же звезды по меридиану при помощи часов и телескопа. Если вам также известно точное время прохождения той же звезды по Гринвичу, вы можете рассчитать долготу, на которой находится судно, исходя из разницы во времени прохождения звезды по меридианам. Во времена британских морских экспедиций XVI–XVII веков долгота определялась преимущественно таким образом, что сыграло решающую роль в изобретении высокоточных морских часов и дало толчок строительству Королевской обсерватории в Гринвиче в 1675 году. Впервые в мире обсерватория возводилась специально ради нужд навигации: Гринвичский меридиан стал надежным ориентиром для расчета координат судов дальнего плавания.
ДАННЫЕ РАСЧЕТА ВРЕМЕНИ У ДВУХ РАЗНЫХ НАБЛЮДАТЕЛЕЙ НИКОГДА НЕ СОВПАДАЮТ В ТОЧНОСТИ; КАЖДОМУ ЧЕЛОВЕКУ СВОЙСТВЕННА СИСТЕМАТИЧЕСКАЯ ОШИБКА НАБЛЮДАТЕЛЯ
Ранее определение местного времени по звездному транзиту требовало колоссальных затрат труда. С приближением нужного момента астроном бросал беглый взгляд на часы, отмечал время с точностью до секунд и уставлялся в телескоп. Поле обзора было расчерчено на ряды вертикальных линий, отделенные друг от друга равными промежутками, для нанесения которых обычно использовалась паутина. Через некоторое время в поле зрения вплывала звезда – яркая светящаяся точка, сверкающая серебром, окруженная цветным гало. Отсчитывая секунды вслух, прислушиваясь к тиканью часов, а иногда к ударам метронома, астроном отмечал точное время прохождения звезды через каждую черту, уделяя особое внимание линии, расположенной посередине, которая изображала меридиан. Методология наблюдения предписывала визуально фиксировать местонахождение звезды по тактам часов дважды – непосредственно перед прохождением линии и сразу после прохождения, документировать обе позиции и сравнивать их между собой, высчитывая разницу в десятых долях секунды, которая равнялась точному времени пересечения меридиана. Данные о времени прохождения звезд по меридианам по дням и неделям можно было сравнивать между собой. Поскольку движение звезд подчинено строгому распорядку, ответственность за любое отклонение от предполагаемого графика возлагалась на часы, которые в таких случаях настраивали заново.
Погрешность измерений при подобной технике регулировки времени достигала двух десятых секунды, но в самой основе метода была допущена системная ошибка. В телескопах разных обсерваторий использовались линзы разной прозрачности. Более того, далеко не в каждой обсерватории часы отбивали такт с одинаковым постоянством, к тому же степень шумоизоляции и вибрационной защиты также не была приведена к единому стандарту. Звезда могла оказаться непривычно яркой или тусклой; мерцать в невидимых воздушных потоках, а в решающий момент и вовсе скрыться за тучами. Самой коварной оказалась погрешность, обусловленная влиянием человеческого фактора, известная в астрономии под названием «систематическая ошибка наблюдателя». В 1795 году королевский астроном Гринвичской обсерватории объявил, что рассчитал своего ассистента по той причине, что показатели времени прохождения звезд по меридиану, зарегистрированные ассистентом, всякий раз на секунду отставали от тех, которые регистрировал он сам: «Мой ассистент следовал собственной методике подсчета, бессистемной и запутанной». Однако в скором времени выяснилось, что данные расчета времени у двух разных наблюдателей никогда не совпадают в точности; каждому человеку свойственна систематическая ошибка наблюдателя. На протяжении последующих пятидесяти лет европейские астрономы только и делали, что измеряли величину погрешности своих наблюдений и сравнивали результаты между собой, безуспешно пытаясь нащупать причину ошибки.
А корень зла следовало искать в самой физиологии человека – «неудачной характеристике нервной системы астронома», как заключил Хирш в 1862 году. Через десять лет в ходе экспериментов немецкого физика и физиолога Германа Гельмгольца было установлено, что процессы восприятия, мышления и действия протекают не одномоментно; скорость человеческой мысли имеет пределы. Подвергая различные части тела добровольца слабому воздействию электротока, Гельмгольц определил продолжительность времени, которое требовалось организму для генерации ответа на раздражитель, который испытуемый отмечал кивком головы. Хотя скорость реакции варьировала в широких пределах, однако в свете обобщенных данных расчетов Гельмгольца стало ясно, что нервные импульсы человека распространяются со скоростью около 36 метров в секунду, что намного меньше результата в 14 миллионов километров в секунду, полученного другими исследователями. Гельмгольц сравнивал человеческие нервы с телеграфными кабелями, «пересылающими сообщения с далеких окраин в центр управления страной». Передача данных занимает некоторое время, которое расходуется на осознание раздражителя и генерацию ответа, а между делом – заодно и на «восприятие мозгом полученной информации и волевое побуждение», как писал Гельмгольц. По его оценкам, фаза восприятия и волевого побуждения длится около 0,1 секунды.
Уже знакомый нам астроном Хирш называл данный интервал «психологическим временем», подозревая, что именно оно в ответе за систематическую ошибку наблюдателя, и провел серию экспериментов для прояснения вопроса. Во время одного из опытов на доску с грохотом падал стальной шар; услышав звук падения, испытуемый должен был надавить на телеграфный ключ. Хирш замерял продолжительность времени между звуком и ударом телеграфного ключа при помощи хроноскопа – специального устройства, способного определять интервалы времени с точностью до секунды, прибавляя к расчету примерно половину скорости нервного импульса, установленной Гельмгольцем. Хроноскоп, изобретенный несколькими годами ранее часовым мастером Маттиасом Хиппом, который позже принял участие в опытах Хирша в качестве добровольца, изначально предназначался для измерения скорости вылета ружейной дроби и падающих объектов. Впоследствии Хипп занял пост директора швейцарской телеграфной службы, а в 1860 году ушел в отставку и основал собственную телеграфную компанию в Невшателе, которая занималась в том числе и поставками оборудования для нового эксперимента в области передачи временных сигналов, затеянного Хиршем. Теперь ученый проводил опыты при помощи хитроумного приспособления, изображавшего прохождение искусственных звезд через линии меридианного инструмента. По предположению экспериментатора, систематическая ошибка наблюдателя варьировала не только от человека к человеку, но и от одного наблюдения к другому в течение дня и на протяжении года; также ее значения могли изменяться в зависимости от яркости звезды и направления ее движения. Если определению времени прохождения звезды через меридиан вместо спокойного ожидания нужного момента предшествовало мысленное представление момента пересечения линии меридиана, значение систематической ошибки наблюдателя также изменялось.
Вскоре астрономы научились минимизировать влияние систематической ошибки наблюдателя за счет устранения личностного компонента в астрономических наблюдениях: прием сигналов времени способом «глаз и ухо» уступил место электрохронографу – вращающемуся барабану бумаги, закрепленному прямо на корпусе часов. Отмечая транзит звезды, астроном нажимал на телеграфный ключ и проставлял на бумаге отметку, избавляясь от необходимости сверяться с часами и даже думать о них, в результате которой регистрация времени происходила с задержкой, обусловленной индивидуальными особенностями восприятия. Теперь два астронома могли рассчитывать на объективные результаты сравнения погрешностей измерений, полученных при использовании одних и тех же часов. Даже находясь в разных обсерваториях, расположенных на расстоянии нескольких километров друг от друга, ученые могли одновременно фиксировать прохождение той или иной звезды по меридиану, сверяясь с одними и теми же часами по телеграфу (после поправки на скорость передачи телеграфных сообщений), а затем рассчитать величину расхождения в результатах.
ПО СУТИ, ЧАСЫ ПРЕДСТАВЛЯЮТ СОБОЙ ИНДИКАТОР ВРЕМЕНИ, ОПРЕДЕЛЯЮЩИЙ МОЕ МЕСТОПОЛОЖЕНИЕ МЕЖДУ НЕДАВНИМ ПРОШЕДШИМ И БЛИЖАЙШИМ БУДУЩИМ
Однако феномен систематической ошибки наблюдателя все равно не остался незамеченным; вслед за астрономами изучением времени занялись физиологи и психологи. Опубликованная в 1862 году статья Хирша, посвященная проблеме «психологического времени», была переведена с немецкого на многие языки мира и приобрела широкую известность в научных кругах. Экспериментальный проект по изучению восприятия времени астрономами лег в основу одного из последующих опытов Вундта по оценке протяженности времени в сознании. Также отмечался рост интереса к исследованиям скорости реакции. В 1926 и 1927 годах Бернис Грэйвс, футбольный тренер и по совместительству соискатель степени магистра психологии в Стэнфорде, проводил исследование скорости реакции игроков стэнфордской футбольной команды под руководством психолога Уолтера Майлса и тренера команды Гленна Уорнера по прозвищу «Поп». Центральную роль в исследовании сыграло хронометражное устройство, изобретенное Майлсом, которое должно было показаться знакомым Хиршу. Сам Майлс именовал свое изобретение «множественным хронографом», поскольку его можно было одновременно подключить к семи линейным игрокам с целью определения скорости линейной атаки после команды квотербека разыграть мяч. Участники эксперимента долгое время спорили между собой, какой способ подачи сигнала лучше. В итоге аргументация в поддержку звукового сигнала, при котором квотербек раздает игрокам подробные инструкции, произнося вслух определенную последовательнось цифр, за которой следует громкая команда «Пошел!», превысила доводы в пользу визуальной коммуникации, при которой нападающие линейные игроки ориентируются на защитников, выстроенных в линию напротив них. Однако оставалось неясным, должен ли возглас «Пошел!» застать линейных игроков врасплох или, напротив, следует оповестить их заранее? Каким должен быть ритм подачи сигналов – ровным или изменчивым? Тестируя хронометражное устройство Майлса, Грэйвс испробовал все возможные варианты. Стоя в стойке с тремя точками контакта, каждый форвард держал голову на пусковом механизме хронометра; движения игрока, услышавшего сигнал, приводили в действие пусковое устройство: на вращающийся барабан падал мяч для гольфа, оставляющий отметку на бумаге. Скорость реакции измерялась в тысячных долях секунды. Грэйвс обнаружил, что игроки сходили с линии более синхронно, если сигнал подавался внезапно и неритмично; при ожидаемой и ритмичной подаче сигнала игроки переходили в атаку на десятую долю секунды быстрее – примерно столько времени требуется человеку на обдумывание решения. «Синхронное выполнение резких и точных движений – одна из главных целей, которую преследует тренер и отрабатывают игроки, – заметил Майлс. – Необходимы большие усилия, чтобы сформировать из одиннадцати человек с разными типами нервной системы мощный слаженный механизм».
Возвращаясь из небольшого продуктового магазина обратно в офис после ланча, я бросил мимолетный взгляд на часы, установленные на высоком пьедестале возле здания банка. Формой они отчасти напоминают огромный морской компас, и внезапно я обнаружил, что часы предпринимают деликатные попытки сориентировать меня не только во времени, но и в других аспектах бытия.
В действительности не только эти часы, но и всякие другие – к примеру, электронные часы в моем сотовом телефоне, настольные у изголовья кровати или наручные, которые я иногда надеваю, – могут рассказать о времени немало интересного. По сути, часы представляют собой индикатор времени, определяющий мое местоположение между недавним прошедшим и ближайшим будущим. «Сейчас девять часов, – заметил философ Мартин Хайдеггер, – это первая фраза, которую я произношу, вынимая из кармана часы. Значит, с тех пор, как случилось то-то и то-то, прошло тридцать минут. Еще через три часа будет двенадцать». Иными словами, часы служат ориентиром относительно прошлого и будущего, а их задача, по выражению Хайдеггера, заключается в «определении точного момента фиксации настоящего», которое представляется нам движущейся мишенью.