Конец всего
Часть 8 из 22 Информация о книге
Для доступа к библиотеке пройдите авторизацию
Уравнение сработало. Оно хорошо описывало статичную Вселенную, в которой существование других звезд и галактик не приводит к мгновенному коллапсу пространства. Эйнштейн снова это сделал.
Единственная проблема заключается в том, что Вселенная не статична. Это стало очевидным для астрономического сообщества несколько лет спустя, когда выяснилось, что бледные пятна на небе, ранее называвшиеся «спиральными туманностями», на самом деле представляют собой другие галактики. Вскоре на основании красного смещения этих галактик Хаббл доказал, что Вселенная расширяется. В отличие от обреченной статичной Вселенной, на которую действует только гравитация, расширяющаяся Вселенная может быть спасена, – по крайней мере, на время, – своим собственным расширением. Гравитация может замедлить этот процесс и в итоге повернуть его вспять, однако Вселенная способна прекрасно существовать на протяжении многих миллиардов лет благодаря первоначальному импульсу и сохраняющимся последствиям ее расширения. (Как началось это расширение – совсем другая история. Для решения стоящей перед нами проблемы достаточно того, чтобы Вселенная не была обречена на практически мгновенное уничтожение, и позаботиться об этом может космологическая константа или расширение пространства.)
Новость о том, что Вселенная расширяется, потребовала переосмысления всей космологии и поставила Эйнштейна в затруднительное положение. Он с неохотой удалил космологическую постоянную из своих уравнений и начал предпринимать попытки революционизировать какую-нибудь другую область фундаментальной физики. И так продолжалось вплоть до в 1998 года, когда результаты наблюдения сверхновых снова внесли путаницу в представления об эволюции Вселенной. Ускоряющееся расширение пространства потребовало повторного введения космологической постоянной, и слабым утешением остается лишь то, что тогда Эйнштейн уже не мог укорить всех фразой: «Я же говорил».
Тот факт, что космологическая постоянная позволяет Вселенной расширяться с ускорением, не означает, что большинство специалистов считают ее введение хорошим и разумным решением[38]. С теоретической точки зрения мы не можем объяснить, почему космологическая постоянная должна иметь именно то значение, которое она имеет. Почему эта подозрительно удобная поправка для наших уравнений вообще должна существовать? И если уж без космологической постоянной не обойтись, почему бы ей не иметь большее значение? Один из наиболее естественных способов объяснения существования космологической постоянной во Вселенной связан с энергией вакуума, или пустого пространства, которая отвечает за такие странные явления, как квантовые флуктуации, то есть возникновение и исчезновение виртуальных частиц. Однако расчетная величина энергии вакуума, предсказанная квантовой теорией поля, оказалась на 120 порядков выше экспериментально измеренной. На случай, если вам не знаком этот термин, разница на порядок – это разница в 10 раз, на два порядка – в 100 раз, а на 120 порядков – в 10120 раз. Даже в астрофизике, где с числами порой обращаются довольно легкомысленно, это расхождение кажется весьма серьезным. Итак, если космологическая константа не является энергией вакуума, столь любимой физиками-теоретиками, что же это такое?
Одно из предложенных решений «проблемы космологической постоянной» основано на гипотезе о том, что данная константа невелика в нашей наблюдаемой Вселенной, но может принимать другие значения в отдаленных областях космоса, а мы лишь случайно оказались там, где оказались. (А может, и не случайно, если другие значения космологической постоянной каким-либо образом препятствуют развитию жизни и сознания, например заставляя пространство расширяться слишком быстро и предотвращая формирование галактик.) Другое возможное объяснение заключается в том, что мы имеем дело не с космологической постоянной, а с неким неизвестным пока энергетическим полем Вселенной, способным со временем меняться. И в этом случае есть вероятность, что оно превратилось в то, чем является сейчас, по какой-то другой причине.
Поскольку мы не уверены, что это действительно космологическая постоянная, мы обычно называем любое гипотетическое явление, способное ускорить расширение Вселенной, темной энергией. Еще один термин для эволюционирующей (т. е. непостоянной) темной энергии – квинтэссенция, таинственный «пятый элемент», о котором любили рассуждать философы античности и Єредневековья и который до сих пор не имеет точного определения. Преимущество гипотезы квинтэссенции заключается в том, что она способна помочь нам сформулировать теорию благодаря проведению некоторых параллелей с космической инфляцией, имевшей место в начале времен. Мы знаем, что причина, вызвавшая космическую инфляцию, в итоге исчезла, поэтому вполне вероятно, что в какой-то момент могло возникнуть поле, вызывающее ускоренное расширение пространства, которое мы наблюдаем сегодня.
(Один из недостатков гипотезы квинтэссенции состоит в том, что изменяющаяся со временем темная энергия теоретически способна уничтожить Вселенную. Например, если сила, которая в данный момент обусловливает ускорение процесса расширения, начнет действовать в противоположном направлении, Вселенная может коллапсировать, что возвращает нас к Большому сжатию. К счастью, это выглядит маловероятным, хотя мы и не можем полностью исключить такую возможность.)
В любом случае, судя по результатам текущих наблюдений, темная энергия действительно очень похожа на космологическую постоянную – неизменное свойство пространства-времени, которое лишь недавно (т. е. в последние несколько миллиардов лет) приобрело доминирующее значение в процессе эволюции Вселенной. На ранних этапах, когда космос был более компактным, в нем просто недоставало пространства для того, чтобы космологическая постоянная (которая является свойством пустого пространства) могла на что-то повлиять, поэтому тогда процесс расширения замедлялся, как и следовало ожидать. Но примерно пять миллиардов лет назад вследствие обычного космического расширения материя рассеялась настолько, что эффект растяжения пространства, обусловленный космологической постоянной, начал становиться более заметным. В настоящее время мы можем измерить движение удаленных сверхновых, взрыв которых произошел до того, как процесс расширения начал ускоряться. Это означает, что мы можем выяснить, когда Вселенная замедлялась, а также довольно точно определить момент ее перехода на стадию ускорения. Темная энергия вполне может оказаться каким-то неизвестным динамичным полем, но пока концепция космологической постоянной идеально вписывается в результаты наблюдений.
Однако ирония в том, что в долгосрочной перспективе константа, добавленная Эйнштейном для спасения Вселенной, скорее всего, приведет к ее гибели.
Бесконечная космическая беговая дорожка
Апокалипсис, обусловленный космологической постоянной, представляет собой медленный и мучительный процесс, сопровождающийся усугубляющейся изоляцией, неумолимым распадом и растянутым на века погружением во тьму. В некотором смысле речь идет не об уничтожении Вселенной, а, скорее, об уничтожении всего, что в ней находится, и ее превращении в абсолютную пустыню.
Причина, по которой космологическая постоянная оказывается столь гибельной для Вселенной, заключается в том, что, раз начавшись, процесс ускоренного расширения пространства никогда не прекращается.
Размер современной наблюдаемой Вселенной гораздо больше, чем вы, вероятно, думаете. «Наблюдаемой» называется область, находящаяся в пределах нашего горизонта частиц. Этим термином обозначается максимальное расстояние, на которое мы можем заглянуть, учитывая конечную скорость света и возраст Вселенной. Поскольку свету требуется время, чтобы достичь наблюдателя, а более отдаленные объекты находятся в более далеком прошлом относительно нас, некоторое расстояние должно соответствовать самому началу времен. Лучу света, испущенному из точки, находящейся на таком расстоянии в момент зарождения Вселенной, потребовалось бы все время ее существования, чтобы добраться до нас. Это и есть горизонт частиц – предельное расстояние, дальше которого мы принципиально неспособны заглянуть. Учитывая, что возраст Вселенной составляет около 13,8 миллиарда лет, логично предположить, что горизонт частиц должен представлять собой сферу радиусом 13,8 миллиардов световых лет. В случае статичной Вселенной это предположение было бы верным. На самом же деле, поскольку Вселенная все это время расширялась, точка, испустившая видимый нами свет 13,8 миллиарда лет назад, теперь находится намного дальше – на расстоянии примерно в 45 миллиарда световых лет. Таким образом, мы можем определить наблюдаемую Вселенную как окружающую нас сферу радиусом около 45 миллиардов световых лет[39].
Ближе всего к этому «краю» мы можем подобраться, наблюдая космическое микроволновое фоновое излучение, пришедшее к нам практически от самого горизонта частиц. Мы также можем увидеть древние галактики, которые сейчас находятся на расстоянии более 30 миллиардов световых лет. Однако дошедший до нас свет этих галактик начал путешествовать по Вселенной задолго до того, как они удалились от нас на такие невероятные расстояния. В противном случае мы вообще не смогли бы их увидеть, поскольку свет, испускаемый ими сейчас[40], уже никогда не сможет нас достигнуть. Оказывается, что в равномерно расширяющейся Вселенной, где более отдаленные объекты удаляются быстрее расположенных вблизи, существует некий предел, за которым скорость удаления превышает скорость света, поэтому свет от удаляющегося объекта уже не может до нас добраться.
Здесь вы можете сказать: «Минуточку! Ничто не может путешествовать быстрее света!» Это справедливо, однако на самом деле никакого противоречия здесь нет. Хотя ничто не может двигаться сквозь пространство быстрее, чем свет, нет никакого правила, которое ограничивало бы скорость удаления друг от друга неподвижных объектов вследствие расширения самого пространства.
Галактики, которые в настоящее время удаляются от нас со скоростью, превышающей скорость света, находятся на удивление близко, учитывая то, насколько далеко мы можем заглянуть. Это расстояние ограничено так называемым радиусом Хаббла и составляет около 14 миллиардов световых лет. В главе 3 говорилось о том, что для описания расстояния до объектов можно использовать значение их красного смещения – величину, на которую их свет сместился в сторону красной (низкочастотной/длинноволновой) части спектра вследствие расширения Вселенной. Объект, находящийся на границе сферы Хаббла, будет иметь красное смещение около 1,5. Это означает, что с момента испускания света световая волна и пространство самой Вселенной растянулись в два с половиной раза[41]. Однако даже такие невообразимые расстояния незначительны по космологическим меркам. Мы наблюдали сверхновые со значением красного смещения около 4. Самые отдаленные из виденных нами галактик имеют значения красного смещения порядка 11, а красное смещение космического микроволнового фонового излучения составляет примерно 1100.
Так как же мы можем увидеть объекты, которые удаляются и фактически всегда удалялись от нас со сверхсветовой скоростью? Если объект движется со скоростью, превышающей скорость света, то излучаемый им световой луч не может достичь нас. Хитрость в том, что свет, который мы наблюдаем, покинул источник еще тогда, когда Вселенная была меньше, а расширение пространства фактически замедлялось. Поэтому луч света, который поначалу удалялся от нас за счет расширения пространства (хотя и был испущен в нашем направлении), в конце концов, «догнал» нас, когда расширение замедлилось, благодаря чему свету удалось достичь ближайшей к нам части Вселенной, где скорость удаления не превышает скорость света. То есть этот свет попал в нашу сферу Хаббла снаружи.
Представьте, что вы стоите в середине очень длинной беговой дорожки, которая движется быстрее, чем вы бежите. Даже если вы будете бежать на максимальной скорости, вы будете смещаться назад. Однако если вас не снесет слишком далеко и беговая дорожка достаточно замедлится, вы сможете избежать падения с заднего конца дорожки, наверстать упущенное и даже немного продвинуться вперед. Таким образом, если вы находитесь во Вселенной, процесс расширения которой замедляется, с течением времени вы сможете наблюдать все больше и больше удаленных объектов по мере того, как их свет будет наверстывать упущенное вследствие расширения пространства. «Безопасная зона», в которой скорость расширения пространства не превышает скорости света, ограниченная радиусом Хаббла, со временем увеличивается, захватывая объекты, ранее находившиеся за ее пределами. Можно сказать, что наши горизонты[42] расширяются.
Однако темная энергия все портит. Из-за нее процесс расширения пространства больше не замедляется, а наоборот, ускоряется на протяжении последних пяти миллиардов лет. И, несмотря на то что сфера Хаббла по-прежнему увеличивается, это происходит настолько медленно, что расширение пространства заставляет ранее видимые объекты покидать ее пределы. Мы можем увидеть чрезвычайно далекие объекты, свет которых сумел проникнуть в сферу Хаббла до начала ускорения, но объекты, чей свет находится за пределами безопасной зоны в настоящий момент, навсегда останутся невидимыми. (Подробнее об этом чуть позже.)
Однако даже без сложностей, связанных с темной энергией, концепция расширяющейся Вселенной с трудом укладывается в голове.
Тот факт, что Вселенная расширяется, означает, что в прошлом она была меньше: хорошо.
Тот факт, что в прошлом она была меньше, говорит о том, что объекты, в настоящее время находящиеся далеко, в прошлом находились ближе: допустим.
Это, в свою очередь, означает, что одна из далеких видимых в настоящее время галактик миллиарды лет назад находилась поблизости: ладно.
И давным-давно эта галактика испустила луч света, который поначалу удалялся от нас, хотя и был направлен в нашу сторону, но потом как бы остановился, развернулся и достиг нас только сейчас: ну, с определенной точки зрения, это имеет смысл.
ОДНАКО НА ЭТОМ СТРАННОСТИ НЕ ЗАКАНЧИВАЮТСЯ.
Прошу прощения за крик. Я действительно кричу и совершенно не собираюсь ничего приукрашивать. Вселенная – очень странная штука, и во многом ее странность обусловлена этой историей с радиусом Хаббла, с которым связаны очень необычные явления. И сейчас я расскажу вам об одной из самых потрясающих космологических странностей, о которых мне известно. Вы ведь знаете, что вдали объекты кажутся более компактными, чем вблизи? Это абсолютно нормально. Чем дальше находится объект, тем меньше его видимый размер. С самолета люди кажутся крошечными. Отдаленные здания можно закрыть большим пальцем. Все это знают.
В случае Вселенной все не так однозначно.
В ближайшей части космоса более удаленные объекты действительно кажутся более мелкими. Солнце и Луна на первый взгляд имеют одинаковые размеры, поскольку Солнце, несмотря на значительно превосходящий размер, удалено от нас гораздо сильнее, чем Луна. И на протяжении многих миллиардов световых лет данная закономерность сохраняется, – чем дальше галактика, тем меньше ее кажущийся размер. Как и следовало ожидать. Однако где-то у границы сферы Хаббла начинает работать противоположная закономерность: чем дальше объект, тем более крупным он кажется! Это, конечно, очень удобно для нас, астрономов, поскольку позволяет рассмотреть структуру и детали очень далеких галактик, которые по идее должны были бы казаться бесконечно малыми точками. Однако, если подумать, это явление все равно выглядит очень странно.
Такое происходит по той же причине, по какой мы можем видеть объекты, которые в настоящее время удаляются от нас со сверхсветовой скоростью. В то время, когда они испустили свой свет, они были гораздо ближе и занимали на небе больше места. Несмотря на то что сейчас они находятся намного дальше, «снимок», который они нам послали, путешествовал все это время и лишь сейчас достиг нас, показав призрачное изображение гораздо более близкого объекта. И чем дальше в прошлое мы заглядываем, тем более компактную Вселенную наблюдаем. Таким образом, после достижения некоторого предела сочетание фактов «в прошлом Вселенная была меньше» и «свету требуется время, чтобы добраться до нас» заставляет нас допустить мысль о том, что галактика, которая в данный момент находится дальше, чем другая галактика, в момент испускания света могла находиться ближе.
Я предупреждала, что будет странно.
Во всяком случае, если описанное выше ошеломляет и сбивает вас с толку, это совершенно нормально. Попробуйте нарисовать несколько набросков на салфетках, а затем растяните эти салфетки во всех направлениях, одновременно бегая по бесконечной беговой дорожке с предельной скоростью на протяжении миллиардов лет. Возможно, тогда вам станет более понятно. Теперь нам следует поговорить о последствиях всего этого для будущего Вселенной, которые, надо признать, не очень хороши.
Медленное погружение во тьму
Утверждение, что «темная энергия все портит», не является преувеличением. Как это ни парадоксально, степень влияния, оказываемого объектами во Вселенной, которая расширяется с ускорением, постоянно уменьшается. Далекие галактики, покидающие сферу Хаббла вследствие космического расширения, будут потеряны для нас навсегда. Галактики, далекое прошлое которых мы сейчас наблюдаем, станут медленно растворяться во тьме, словно изображение на древней фотографии. В ближайшей к нам области космического пространства после слияния Млечного Пути и Андромеды наша маленькая местная группа галактик будет становиться все более и более изолированной, окруженной тьмой и умирающим первородным светом. В остальном космосе невидимые для нас группы галактик будут сливаться воедино, образуя гигантские эллиптические скопления звезд, которые будут ярко загораться при первоначальном столкновении, но постепенно превратятся в затухающие угольки, чей свет никогда не достигнет границы их собственной расширяющейся сферы пустоты.
В конце концов, каждая умирающая супергалактика окажется в полном одиночестве. Ничто и никогда больше не пополнит их запасы газа, чтобы зажечь новые звезды. Уже существующие звезды выгорят, а затем взорвутся как сверхновые или, что вероятнее, сбросят внешние слои и превратятся в медленно догорающие остатки, охлаждающиеся на протяжении миллиардов или триллионов лет. В течение какого-то времени некоторые черные дыры будут продолжать расти, поглощая целые галактики, состоящие из мертвых звездных остатков. Рост других прекратится, поскольку никакая новая материя уже не приблизится к ним достаточно близко для того, чтобы быть поглощенной.
Когда все звезды погаснут во тьме, начнется окончательный распад.
Начнут испаряться черные дыры.
Изначально считалось, что черные дыры вечны, то есть способны расти, поглощая материю, но не способны терять массу. Учитывая, что из черной дыры не может вырваться даже свет, логично предположить, что данный объект представляет собой своеобразную бездну. Однако в 1970-х годах Стивен Хокинг произвел расчеты и показал, что квантовые эффекты, проявляющиеся вблизи горизонта событий черной дыры, вызывают слабое свечение. Это свечение приводит к потере энергии – или, что одно и то же, массы, в результате чего размер черной дыры уменьшается. Поначалу процесс идет медленно, но затем начинает ускоряться. При этом излучение черной дыры становится все более интенсивным и горячим вплоть до ее взрыва и исчезновения. Даже сверхмассивным черным дырам в центрах галактик, масса которых в миллионы или миллиарды раз превышает массу Солнца, суждено со временем исчезнуть.
Обычную материю, то есть вещество, из которого состоят звезды, планеты, а также газ и пыль, ждет та же, хотя и менее драматичная судьба.
Известно, что большинство элементарных частиц на каком-либо уровне нестабильны. Если оставить их в покое на длительное время, они распадутся на другие компоненты, потеряв при этом массу и энергию. Например, нейтрон в итоге распадется на протон, электрон и антинейтрино. Хотя мы никогда не наблюдали распад протона в ходе экспериментов, у нас есть основания полагать, что это возможно, но придется подождать примерно 1033 лет. К тому моменту перестанут существовать даже атомы водорода, которые составляли самую многочисленную группу атомов во Вселенной со времен Большого взрыва.
Для далекого будущего Вселенной, предопределенного темной энергией в форме космологической постоянной, характерна тьма, изоляция, пустота и распад. Однако это медленное угасание – лишь начало конца, называемого «тепловой смертью».
Термин «тепловая смерть» может показаться не вполне подходящим для описания самого холодного и темного состояния космоса в истории Вселенной. Но в данном случае под техническим термином «теплота» понимается не «тепло», а «неупорядоченное движение частиц или энергии». И речь идет не о смерти самой теплоты, а о смерти из-за теплоты. Именно беспорядок в итоге нас погубит. Вот почему нам следует немного поговорить об энтропии.
Энтропия – это, пожалуй, одна из самых важных, глубоких и плохо понимаемых тем во всей науке. Она проявляется везде – не только в физике всего, начиная от воздушных шаров и заканчивая черными дырами, но и в сфере компьютерных наук, статистики, а также экономики и нейробиологии.
Как правило, энтропия описывается как мера беспорядка. Чем менее упорядочена система, тем выше ее энтропия. Кучка кусочков мозаики имеет более высокую энтропию, чем сложенная картинка; яичница имеет более высокую энтропию по сравнению с нетронутым яйцом. В тех случаях, когда «беспорядок» неочевиден, энтропию можно рассматривать как меру того, насколько свободными или неограниченными являются элементы системы. Например, сложенная картинка имеет низкую энтропию, поскольку существует только один правильный способ организации кусочков мозаики, тогда как кучка кусочков может иметь любую из множества конфигураций, не теряя при этом своей сущности.
Несмотря на то что из приведенных примеров это неочевидно, более высокая энтропия связана с более высокой температурой. Это имеет смысл, если подумать о разнице между глыбой льда и облаком пара. Чтобы стать льдом, молекулы воды должны сложиться в кристаллическую структуру, тогда как частицы пара могут свободно перемещаться в трех измерениях. Однако даже простое охлаждение пара приводит к некоторому уменьшению его энтропии, поскольку частицы двигаются менее активно и не так беспорядочно.
Важно то, что в масштабе Вселенной энтропия со временем возрастает. Согласно второму закону термодинамики[43], в любой изолированной системе совокупная энтропия может лишь увеличиваться, но не уменьшаться. Другими словами, порядок не возникает спонтанно из ниоткуда, и если вы оставите систему в покое на достаточно длительное время, мера беспорядка в ней неизбежно увеличится. Любой, кто пытался поддерживать порядок на своем столе, знаком с этим самым раздражающим законом природы.
Вопрос о том, является ли Вселенная изолированной системой, все еще предмет дискуссий, но если мы согласимся с этим, нам придется признать, что в будущем космос ожидает лишь нарастание беспорядка и распад. Фактически второй закон термодинамики считается настолько незыблемым и фундаментальным, что им объясняют существование самой стрелы времени.
Как правило, законы физики не учитывают направление течения времени; в большинстве ситуаций обращение времени в уравнениях не влияет на результат. Единственная часть физики, которой, судя по всему, есть дело до этого, – энтропия. На самом деле, вполне возможно, что единственная причина, по которой мы помним прошлое, а не будущее, заключается в том, что истина «дальше будет только хуже», настолько универсальна, что она формирует саму реальность, какой мы ее знаем.
Вы можете возразить: «Но я же сложил мозаику! Я создал порядок! Я что, обратил время вспять?!»
Не совсем. Мозаика – это не изолированная система, и вы тоже. Технически любое локальное увеличение энтропии можно обратить вспять, если приложить достаточно усилий. Собрать разбитое яйцо обратно чрезвычайно сложно, но возможно при наличии достаточного количества времени и невероятно сложного лабораторного оборудования. Однако совокупная энтропия всегда будет нарастать. В случае с мозаикой, усилия, которые вы должны приложить для того, чтобы ее собрать, потребуют затрат энергии, а это означает, что вы будете переваривать пищу и выделять в окружающую среду тепло и продукты жизнедеятельности (например, углекислый газ). В результате воздух в комнате нагреется и загрязнится твердыми частицами. Кроме того, за то время, пока вы складываете мозаику, вы, вероятно, помнете свою рубашку. Я не знаю, что могла бы сделать с окружающей средой машина для сборки яиц, но я точно не хотела бы оказаться в закрытой комнате, в которой она работает.
Кстати, именно поэтому, если оставить дверцу холодильника открытой, в итоге нагреется весь воздух в кухне. По той же причине кондиционеры могут способствовать глобальному потеплению. Каждая наша попытка подчинить своей воле какую-то часть мира создает беспорядок в другой его части, как правило, в форме теплоты.
Каких бы интересных последствий это ни имело для яиц, холодильников и кондиционеров, все становится гораздо более странным, если включить в эту картину черные дыры.
Еще в 1970-х годах физики много говорили об энтропии, о ее постепенном увеличении в масштабе всей Вселенной, а также о возможных последствиях этого процесса. В то же самое время молодой и малоизвестный Стивен Хокинг и еще более молодой постдокторант Джейкоб Бекенштейн размышляли о черных дырах и задавались вопросом, не способны ли эти странные космические мусороперерабатывающие предприятия как-то вмешаться в действие второго закона термодинамики. Например, что будет, если собрать разбитое яйцо, а затем выбросить нагретую лабораторию, которая для этого использовалась, в ближайшую черную дыру? Уменьшится ли совокупная энтропия Вселенной, если собрать яйцо и избавиться от энтропии, возникшей в ходе этого процесса? В конце концов, черная дыра описывается как некая область, из которой не может вырваться даже свет. Это объект настолько массивный и компактный, что его гравитация сгибает световые лучи, направляя их обратно к центральной сингулярности. Попав за горизонт событий черной дыры, то есть преодолев гравитационную точку невозврата, ничто – ни свет, ни информация, ни теплота – уже не сможет вырваться оттуда. Может ли сокрытие энтропии за горизонтом событий черной дыры считаться идеальным преступлением?
Какую бы часть физики вы ни решили перехитрить, никогда не ставьте против второго закона термодинамики. Решение проблемы энтропии черных дыр изменило наши представления об этих объектах. Энтропию нельзя скрыть в черных дырах, потому что им присуща собственная энтропия. У них есть температура (они производят тепло). А это означает, что они вовсе не «черные».
Бекенштейн и Хокинг в итоге пришли к выводу, что черная дыра должна иметь энтропию, чтобы существовать в соответствии со вторым законом термодинамики. Поскольку эта энтропия должна увеличиваться всякий раз, когда черная дыра что-то поглощает, логично предположить, что энтропия связана с размером самой черной дыры – в частности, с общей площадью поверхности горизонта событий. Если бросить в черную дыру холодильник, ее масса увеличится на массу холодильника, что приведет к увеличению размера горизонта событий и, следовательно, площади его поверхности[44].
Тот факт, что энтропия связана с температурой, означает, что черные дыры должны что-то излучать (например, радиацию и частицы). И это излучение может иметь место лишь на горизонте событий или непосредственно вблизи него, снаружи, поскольку вырваться за его пределы не может ничто. Таким образом, в этой области должно происходить нечто странное.
К счастью, если нам понадобятся странности, мы всегда можем найти что-нибудь в области квантовой физики. В данном случае Хокинг воспользовался такой странностью, как виртуальные частицы – пары частиц с положительной и отрицательной энергией, которые рождаются и исчезают в вакууме[45]. Идея заключалась в том, что это происходит постоянно и повсюду в пространстве-времени, как правило, не оказывая никакого влияния, поскольку виртуальные частицы исчезают практически сразу после своего спонтанного появления, аннигилируя друг с другом. Однако Хокинг считал, что вблизи черной дыры может возникнуть ситуация, когда виртуальная частица с отрицательной энергией попадает за горизонт событий, а виртуальная частица с положительной энергией превращается в реальную и улетает. Вследствие поглощения отрицательной энергии масса черной дыры немного уменьшается, при этом такое же количество положительной энергии излучается на ее горизонте событий. Поскольку виртуальные частицы появляются и исчезают постоянно и повсюду в космосе, любая черная дыра, которая активно не поглощает вещество из своего ближайшего окружения, должна постепенно терять массу в ходе такого процесса испарения.
Каким бы сложным ни казалось это описание, оно используется чаще всего и представляет собой сильно упрощенную картину, предназначенную лишь для передачи основной идеи без лишних технических подробностей. Однако меня оно никогда не удовлетворяло, поскольку оно предполагает, что частицы с отрицательной энергией преимущественно падают в черную дыру, тогда как частицы с положительной энергией улетают прочь, обладая достаточным количеством энергии для того, чтобы преодолеть ее притяжение. Несмотря на то что Хокинг использовал это объяснение, выступая перед широкой аудиторией, он не хотел, чтобы оно воспринималось буквально, но настоящее объяснение предполагает расчет волновых функций и рассеяния, которое происходит с волнами вблизи черной дыры. В этом невозможно разобраться без серьезной подготовки в области математики и физики. Однако если вы сейчас тоже пришли в недоумение, я просто хочу вас заверить, что, несмотря на неадекватность популярной аналогии, результаты расчетов имеют смысл, если произвести их по всем правилам, используя общую теорию относительности и квантовую теорию поля.
Таким образом, мы можем с уверенностью предположить, что перед лицом тепловой смерти черные дыры действительно испаряются, не оставляя ничего, кроме небольшого количества радиации, которая распространяется по опустошающейся Вселенной. Надеюсь, это более или менее понятно.
Кроме того, способность горизонтов излучать радиацию и учитывать энтропию своего содержимого не только обрекает все черные дыры на гибель, но и вносит важный вклад в процесс тепловой смерти. Ведь у нашей наблюдаемой Вселенной тоже есть горизонт, и мы находимся внутри него.