Конец всего
Часть 6 из 22 Информация о книге
Для доступа к библиотеке пройдите авторизацию
Об эпохе кварков и о кварк-глюонной плазме мы знаем гораздо больше, чем об эпохе Великого объединения. Соответствующая теория довольно хорошо разработана и не так сильно отклоняется от стандартной физики элементарных частиц, как ТВО, а эксперименты подтверждают прогнозы, основанные на теории электрослабых взаимодействий. Однако настоящий прорыв состоит в том, что мы способны воссоздать кварк-глюонную плазму в лаборатории. Такие ускорители частиц, как Релятивистский коллайдер тяжелых ионов (RHIC, The Relativistic Heavy Ion Collider) и Большой адронный коллайдер (БАК, или LHC, Large Hadron Collider), сталкивая между собой ядра золота или свинца на чрезвычайно высоких скоростях, способны создавать крошечные огненные шары, настолько горячие и плотные, что они сдавливают все частицы и на мгновение заполняют коллайдер кварк-глюонной плазмой. Наблюдая, как после столкновений обломки «замерзают», превращаясь в обычные адроны, ученые могут изучить свойства этой экзотической материи, а также действие законов физики в таких экстремальных условиях.
Если исследование реликтового излучения позволяет нам увидеть Большой взрыв, то ускорители частиц дают нам попробовать на вкус первичный бульон[26].
Первичный нуклеосинтез
После окончания фазы кварк-глюонной плазмы температура Вселенной понизилась достаточно для того, чтобы в ней начали образовываться некоторые из знакомых нам частиц. Спустя примерно одну десятую долю миллисекунды после возникновения Вселенной в ней сформировались первые строительные блоки обычной материи – протоны и нейтроны, за которыми вскоре последовали электроны. Где-то около двухминутной отметки Вселенная охладилась до комфортной температуры в миллиард градусов Цельсия, что гораздо горячее, чем центр Солнца, но достаточно прохладно для того, чтобы сильное ядерное взаимодействие могло объединить друг с другом только что возникшие протоны и нейтроны. Из них образовалось первое атомное ядро – форма водорода, называемая дейтерием (один протон, связанный с одним нейтроном; технически один протон также может считаться ядром, поскольку он является центром атома водорода). Вскоре такие ядра уже формировались повсюду. Некоторые протоны и нейтроны начали объединяться, образуя ядра гелия, трития, а также лития и бериллия. Этот процесс, называемый первичным нуклеосинтезом, продолжался около получаса до тех пор, пока Вселенная не остыла и не расширилась настолько, что частицы могли удаляться друг от друга на достаточное расстояние и уже не сливаться.
Одним из лучших подтверждений теории Большого взрыва является факт обнаружения тесной связи между нашими наблюдениями за космосом и расчетным количеством элементов, которое мы ожидаем, основываясь на оценках температуры и плотности первичного огненного шара. Это соответствие не совершенное – существует некоторая путаница, связанная с количеством лития, которая может свидетельствовать о какой-то неизвестной пока странности, свойственной ранней Вселенной. Что же касается водорода, дейтерия и гелия, фактическое их количество прекрасно согласуется с тем, которое мы ожидали бы обнаружить, если бы на ранних этапах своего развития весь космос представлял собой одну большую ядерную топку.
Кроме того, факт, что почти весь водород во Вселенной образовался в первые несколько минут после ее возникновения, говорит о том, что большая часть составляющего наш организм вещества в той или иной форме существовала во Вселенной практически на протяжении всей ее истории. Возможно, вы уже слышали, что «мы состоим из звездной пыли» (или «звездного вещества», как выразился Карл Саган), и это абсолютно верно, если судить по массе. Все наиболее тяжелые элементы в нашем теле – кислород, углерод, азот, кальций и т. д. – сформировались позднее, либо в недрах звезд, либо в результате их взрывов. Что касается количества, то самым распространенным элементом в нашем организме является водород (наиболее легкий элемент). Таким образом, мы действительно отчасти состоим из пыли древних поколений звезд. Однако мы также в значительной степени состоим из побочных продуктов Большого взрыва. Так что утверждение Карла Сагана остается в силе: «Мы – способ, которым Космос познает себя».
Поверхность последнего рассеяния
После окончания стадии первичного нуклеосинтеза содержимое Вселенной начало понемногу успокаиваться. К этому моменту смесь частиц была уже более или менее стабильной и оставалась таковой вплоть до появления первых звезд миллионы лет спустя. Однако на протяжении многих сотен тысяч лет космос все еще представлял собой горячую, гудящую плазму, состоящую в основном из ядер водорода и гелия и свободных электронов, между которыми сновали фотоны (частицы света).
С течением времени Вселенная расширялась, и излучение и материя распространялись. Иногда я представляю эту фазу ранней Вселенной в виде путешествия из центра Солнца наружу, только вместо движения в пространстве в данном случае происходит движение во времени. Оно начинается из центра Солнца, где температура и плотность настолько высоки, что атомные ядра сливаются друг с другом, образуя новые элементы. Внутренняя часть Солнца заполнена светом. Фотоны непрерывно отскакивают от электронов и протонов с такой силой, что им могут потребоваться сотни тысяч лет для того, чтобы достичь поверхности. По мере приближения к ней плазма становится все менее плотной, благодаря чему свет может перемещаться на большие расстояния, не сталкиваясь с препятствиями. После достижения поверхности он может свободно распространяться в космосе.
Аналогичным образом, в результате путешествия во времени, длившегося примерно 380 000 лет, начиная с первых минут существования Вселенной, весь космос превратился из горячей плотной плазмы в охлаждающийся газ из протонов и электронов, способных объединиться в нейтральные атомы, позволяя свету свободно распространяться между ними вместо того, чтобы постоянно отскакивать от заряженных частиц. Мы называем конец этой стадии огненного шара ранней Вселенной «поверхностью последнего рассеяния», поскольку речь идет о своего рода поверхности во времени, когда свет высвобождается из плазменной ловушки и получает возможность беспрепятственно путешествовать сквозь космос.
Именно это мы видим, когда наблюдаем космическое микроволновое фоновое излучение: момент, определяющий окончание Горячего Большого взрыва и переход ко Вселенной, в которой свет распространяется в темном и безмолвном пространстве. Этот момент также можно считать началом космического периода Темных веков, – промежутка времени, в течение которого газ медленно охлаждался и конденсировался в сгустки под воздействием первичных колебаний плотности. Примерно у отметки в 100 миллионов лет один из этих сгустков становится настолько плотным, что на его месте вспыхивает звезда, знаменующая начало эпохи, получившей название «Космический рассвет».
Космический рассвет
Превращение темной, наполненной газом Вселенной в космос, залитый светом звезд и галактик, в основном было обусловлено некой экзотической материей, которую нам пока не удалось воссоздать в самых мощных ускорителях частиц. Наряду с излучением, газообразным водородом и другими первичными элементами в ранней Вселенной существовало вещество, которое мы называем темной материей. Хотя на самом деле она не темная, а невидимая, – кажется, что она совершенно не желает каким-либо образом взаимодействовать со светом. Она ничего не излучает, не поглощает и не отражает. Насколько мы можем судить, луч света просто проходит сгусток темной материи насквозь. Однако темная материя способна оказывать гравитационное воздействие. Когда обычная материя пытается сконденсироваться в сгусток под действием собственной гравитации, она испытывает давление, направленное в обратную сторону. Однако темная материя способна конденсироваться, не ощущая воздействия этой силы. Побочным эффектом отсутствия взаимодействия со светом оказалось то, что эта материя вообще ни с чем не взаимодействует, поскольку в большинстве случаев столкновения между частицами материи происходят вследствие электростатического отталкивания, условием которого является взаимодействие со светом. (Фотоны представляют собой частицы света, однако они также переносят электромагнитное взаимодействие, поэтому нечто невидимое не испытывает электромагнитного притяжения или отталкивания). Нет электромагнетизма – нет давления.
Первые небольшие сгустки вещества, сформировавшиеся в результате колебания плотности в конце фазы инфляции, состояли из радиации, темной и обычной материи. Поскольку обычное вещество испытывало на себе воздействие давления и смешивалось с излучением, поначалу только темная материя могла слипаться под влиянием гравитации. Позднее, когда Вселенная расширилась еще больше, позволив радиации распространиться, а материи остыть, газ смог попасть в эти гравитационные колодцы и сконденсироваться в звезды и галактики. Даже сегодня структура материи в самых больших масштабах, то есть космическая сеть галактик и их скоплений, поддерживается паутиной из сгустков и нитей темной материи. В эпоху космического рассвета эти невидимые сгустки и нити начали светиться по мере того, как звезды и галактики зажигались в темноте, словно сказочные огоньки.
Эпоха галактик
Следующий переходный момент в развитии Вселенной наступил тогда, когда в космосе появилось столько звездного света, что он ионизировал окружающий газ, который к окончанию стадии огненного шара стал нейтральным. Интенсивный звездный свет снова разделил атомы водорода на свободные электроны и протоны, породив гигантские пузыри ионизованного газообразного водорода, окружающие самые яркие скопления галактик. Формирование этих расширяющихся пузырей ознаменовало начало эпохи реионизации (приставка «ре» говорит о том, что газ был ионизирован в самом начале во время Большого взрыва, а теперь подвергся повторной ионизации светом звезд). Этот переходный процесс, который завершился где-то у отметки в миллиард лет, в настоящее время является одним из рубежей наблюдательной астрономии, и мы еще только начинаем понимать, как и когда он произошел. На протяжении следующих 13 миллиардов лет происходило примерно одно и то же: галактики формировались и объединялись, сверхмассивные черные дыры накапливали массу в центрах галактик, рождались и жили своей жизнью новые звезды.
Итак, в конце концов мы очутились в том космосе, каким мы его видим сегодня, – в этой огромной и прекрасной паутине галактик, сияющих во тьме. Наша собственная бело-голубая планета вращается вокруг умеренного размера желтой звезды в галактике, которая по всем параметрам близка к средней. И, несмотря на то что нам до сих пор не удавалось обнаружить однозначных признаков этого, наша ничем не примечательная галактика вполне может изобиловать жизнью, поскольку взрывы сверхновых звезд уже давно обеспечили каждый из миллиардов миров основными компонентами для развития биологических форм. Согласно текущим оценкам, в каждой десятой звездной системе есть планета, чей размер и расстояние до звезды позволяет воде на поверхности находиться в жидком состоянии, что может служить признаком существования жизни. В триллионе других галактик в наблюдаемой Вселенной может обитать бесчисленное множество различных видов существ со своей цивилизацией, искусством, культурой, наукой и совершенно особым взглядом на историю космоса. В каждом из этих миров существа, похожие или сильно отличающиеся от нас, тоже могут обнаружить слабый гул космического микроволнового фонового излучения, прийти к выводу о произошедшем когда-то Большом взрыве и к пониманию того, что наш общий космос существовал не всегда, а имел начало, первую частицу и первую звезду.
И те другие существа, как и мы, могут прийти к тому же самому заключению: Вселенная не является статичной, она когда-то возникла и неизбежно должна однажды исчезнуть.
Глава 3. Большое сжатие
Предлагаю начать с конца света. Покончим с ним и перейдем к более интересному.
Н. К. Джемисин, «Пятое время года»
В темную безлунную осеннюю ночь, находясь в Северном полушарии, посмотрите вверх и найдите на небе созвездие Кассиопея в виде буквы W. Вглядитесь в пространство под ним, и, если небо будет достаточно темным, вы увидите тусклое размытое пятно, ширина которого примерно соответствует диаметру полной луны. Это галактика Андромеды, огромный спиральный диск с триллионом звезд и сверхмассивной черной дырой в центре, который несется нам навстречу со скоростью 110 километров в секунду.
Примерно через четыре миллиарда лет галактика Андромеды и наша галактика Млечный Путь столкнутся, устроив потрясающее световое шоу. Звезды будут сходить со своих орбит, образуя звездные потоки, простирающиеся сквозь космос изящными дугами. Внезапное столкновение галактического водорода приведет к рождению новых звезд. Газ воспламенится вокруг спящих в центре галактик сверхмассивных черных дыр, которые начнут постепенно сближаться друг с другом, пока не сольются воедино. Струи интенсивного излучения и частиц высоких энергий будут пронзать хаотический клубок газа и звезд, а в центральной области новой галактики «Млечномеда» образуется испускающий рентгеновское излучение водоворот обреченной материи, падающей в новую, еще более массивную черную дыру.
Даже в самый разгар этой галактической катастрофы лобовые столкновения между звездами маловероятны из-за огромных расстояний между ними. Солнечная система в целом, скорее всего, выживет. Чего нельзя сказать о Земле. К тому моменту Солнце уже перейдет в стадию красного гиганта, в результате чего температура Земли увеличится настолько, что океаны полностью испарятся, и жизнь на ее поверхности станет невозможной. Однако, если человечеству удастся найти пристанище в другой части Солнечной системы, то на протяжении нескольких миллиардов лет люди смогут любоваться впечатляющим зрелищем, наблюдая за процессом объединения двух огромных спиральных галактик. Когда струи частиц иссякнут и отбушуют взрывы сверхновых, получившаяся в результате объединения галактик масса будет представлять собой гигантское эллипсоидное скопление старых и умирающих звезд.
Каким бы катастрофическим ни казалось слияние галактик его непосредственным участникам, оно представляет собой вполне обычное космическое явление и довольно завораживающее, если наблюдать его с огромного расстояния. Большие галактики разрывают на части и поглощают более мелкие; соседние звездные системы сливаются друг с другом. Существуют свидетельства того, что наш Млечный Путь поглотил десятки своих более мелких соседей, – мы до сих пор можем видеть гигантские звездные хвосты, закручивающиеся вокруг диска нашей галактики, словно обломки, оставшиеся после межзвездной автомобильной катастрофы.
Однако в масштабе Вселенной подобные столкновения становятся все более редким явлением. Вселенная расширяется, – пространство, то есть расстояние между объектами, а не сами объекты, увеличивается. Это означает, что отдельные галактики и группы галактик в среднем все сильнее удаляются друг от друга. Внутри самой группы и скопления слияния по-прежнему могут иметь место. В непосредственной близости от нас находятся звездные системы, объединенные в группу с невыразительным названием «Местная группа галактик», представляющую собой разношерстную компанию небольших и неправильных галактик, на фоне которых выделяются две гигантские спирали, и всем им рано или поздно суждено слиться воедино. Однако объекты, находящиеся на больших расстояниях, порядка нескольких десятков миллионов световых лет, судя по всему, удаляются от нас.
В долгосрочной перспективе главный вопрос следующий: будет ли это расширение продолжаться бесконечно или оно когда-то закончится и обратится вспять? Откуда мы вообще знаем, что расширение имеет место?
Когда вы находитесь во Вселенной, которая расширяется равномерно во всех направлениях, вы наблюдаете не расширение как таковое, а скорее удаление всех объектов от вас. С Земли видно, как далекие галактики разбегаются от нас, будто мы их каким-то образом отталкиваем. Однако если бы мы внезапно оказались в галактике за миллиард световых лет отсюда, мы и там увидели бы, как Млечный Путь и все остальные объекты, находящиеся за пределами некоторой области, удаляются от нас. Этот феномен является несколько контринтуитивным следствием равномерного и повсеместного расширения пространства.
Таким образом, каждая точка во Вселенной – это центр мощного равномерного отталкивания. Технически Вселенная не имеет центра. Однако каждый из нас является центром собственной наблюдаемой Вселенной[27]. И с нашей точки зрения, все галактики, находящиеся за пределами нашей группы, удаляются от нас с максимально возможной скоростью. Но дело не в нас; дело в космологии.
Обнаружить космическое расширение было не так легко, как может показаться. Несмотря на то что галактики начали наблюдать в телескопы уже в 1700-х годах, из-за их огромной удаленности и чудовищно медленного (по человеческим меркам) движения людям потребовалось более двух веков для того, чтобы выяснить, как они движутся относительно нас и являются ли они вообще галактиками. Даже самые мощные современные телескопы не позволяют наблюдать их движение напрямую – галактики не кажутся удаляющимися от нас, когда мы на них смотрим. Однако мы можем обнаружить это, проанализировав такое, на первый взгляд, не имеющее отношения к делу свойство галактик, как цвет их свечения.
Если вы когда-либо замечали, как меняется звук проезжающей мимо гоночной машины или обращали внимание на изменение тона сирены при ее приближении и удалении, то вы уже знакомы с эффектом Доплера. Доплеровское смещение – это явление, при котором звук становится более высоким по мере приближения издающего его объекта и более низким по мере его удаления. Это связано с изменением частоты воспринимаемого звука вследствие сокращения и увеличения длины звуковой волны. В конце концов, частота зависит от скорости, с которой волны достигают вас. В случае со звуком это волны давления, и более высокая частота характеризуется более высоким звуком.
Оказывается, нечто подобное происходит и со светом. Свету быстро приближающегося к нам источника свойственна более высокая частота, а быстро удаляющегося – более низкая. В случае со световой волной частота определяет цвет, поэтому такой сдвиг воспринимается как изменение цвета. Электромагнитный спектр простирается далеко за пределы видимого, но что касается света, доплеровский сдвиг в сторону более высоких частот называется синим смещением, а сдвиг в сторону более низких частот – красным смещением. При сильном синем смещении видимый свет может восприниматься как гамма-излучение, а при сильном красном смещении – как радиосигнал. Этот феномен является одним из наиболее важных и универсальных инструментов в астрономии, поскольку позволяет нам по одному лишь цвету звезды или галактики определить, приближается она к нам или удаляется.
Разумеется, на практике все немного сложнее. Некоторым звездам и галактикам просто свойствен красноватый цвет. Как же в таком случае понять, является ли какой-то объект красным на самом деле или просто кажется таковым, поскольку удаляется от нас?[28] Ключ в том, что свет представляет собой не одиночную волну с определенными характеристиками, а поток волн разных частот – спектр. Набор спектральных линий в спектре звезды обусловлен светом, поглощаемым или испускаемым различными химическими элементами в составе ее атмосферы. При разложении света с помощью призмы мы видим спектр цветов разной интенсивности, при этом темные линии или промежутки появляются на тех частотах, которые соответствуют свету, поглощенному атомами, содержащимися в атмосфере звезды, из-за чего этому свету так и не удалось достичь нас. В результате мы имеем своеобразный, уникальный для каждого элемента штрихкод из набора линий, который астрономы могут легко распознать. Например, при разложении проходящего сквозь облако водорода света по длинам волн мы увидим характерный гребнеобразный рисунок темных линий. В ходе лабораторных испытаний мы можем выяснить, где именно должны находиться эти линии и каким должен быть их рисунок для того или иного элемента. Если звезда имеет в своем спектре узнаваемую последовательность линий, но располагается она на «неправильных» частотах, это говорит о смещении спектра звезды вследствие ее движения. Если все линии одинаково смещены в сторону более низких частот, то мы имеем дело с красным смещением, которое свидетельствует об удалении звезды. Если каждая линия сдвинута в сторону более высоких частот, речь идет о синем смещении, говорящем о том, что звезда приближается. При этом степень смещения линий позволяет определить скорость движения звезды.
Астрономы достигли больших успехов в проведении подобных измерений. В настоящее время красное и синее смещение представляет собой одну из самых легко измеряемых характеристик любого источника света во Вселенной, при условии, что спектр снят и в нем присутствуют узнаваемые наборы линий. Благодаря этому мы можем понять, как звезды в нашей галактике движутся относительно нас, а также обнаружить небольшое колебание звезды, вызванное вращающейся вокруг нее планетой.
В случае с далекими галактиками красное смещение позволяет нам выяснить не только то, приближаются они к нам или удаляются, и с какой скоростью, но и определить расстояние до них. Каким образом? Дело в том, что вследствие расширения Вселенной пространство между нами и далекой галактикой увеличивается, поэтому, как бы она ни двигалась относительно нас, в целом она будет удаляться. И скорость ее удаления зависит от того, насколько далеко она находится сейчас.
В 1929 году в ходе изучения красного смещения галактик астроном Эдвин Хаббл заметил поразительную закономерность. Более далеким галактикам в среднем свойственны более высокие показатели красного смещения. Эта закономерность позволила нам подтвердить гипотезу о расширении космоса и получить представление об этапах его эволюции. Обнаруженная Хабблом взаимосвязь между показателем красного смещения и скоростью говорит о том, что чем дальше находится галактика, тем быстрее она от нас удаляется.
Представьте, что вы берете в руки игрушку-пружинку «слинки» и растягиваете ее. (Просто растягиваете. Это для науки.) По мере разведения рук в стороны каждый виток пружинки удаляется от соседнего лишь на ширину пальца, при этом два витка на противоположных ее концах удаляются друг от друга более чем на метр. Если пространство расширяется равномерно во всех направлениях, подобные закономерности должны действовать и в космосе, что и обнаружил Хаббл в ходе своих наблюдений. Математически это выражается в виде простого правила: кажущаяся скорость удаления галактики прямо пропорциональна расстоянию до нее. Из этого следует, во-первых, что более отдаленные объекты удаляются от нас быстрее. Во-вторых, существует некоторое число, на которое можно умножить расстояние до любой галактики, чтобы выяснить ее скорость. Несмотря на то что именно Хаббл в итоге доказал существование этой закономерности и вычислил приблизительное значение данного коэффициента, сама закономерность была описана теоретически на несколько лет раньше бельгийским астрономом и священником Жоржем Леметром. Поэтому данное отношение стало называться законом Хаббла – Леметра[29].
А коэффициент пропорциональности (число, на которое мы умножаем расстояние) – постоянной Хаббла.
Самой важной для нас в данном случае является связь между красным смещением и расстоянием. Она означает, что на основании измерения красного смещения далекой галактики мы можем точно определить расстояние до нее. (С некоторыми техническими оговорками[30].)
Однако красное смещение также связано с космическим временем. Расширение Вселенной многое в астрономии делает весьма странным, и одна из таких вещей заключается в использовании цвета, записанного в виде числа, для обозначения скорости, расстояния и «возраста, в котором находилась Вселенная в то время, когда данный объект испустил свет». Физика – безумная наука.
Вот как это работает. Если мы измерим красное смещение галактики, мы будем точно знать, насколько быстро она удаляется от нас, а с помощью закона Хаббла-Леметра мы можем выяснить расстояние до нее. Однако поскольку свету требуется время, чтобы добраться до нас, и нам известна его скорость, знание расстояния также говорит нам о том, как долго свет был в пути. Это означает, что измерение красного смещения галактики позволяет понять, как давно свет ее покинул. А поскольку нам известен текущий возраст Вселенной, мы можем выяснить, сколько лет ей было в тот момент, когда данная галактика испустила свет, который мы видим.
Принимая все это во внимание, астрономы могут использовать красное смещение для обозначения более ранних эпох Вселенной. «Высокое значение красного смещения» говорит о давнем времени, когда Вселенная была очень молодой; «низкое значение красного смещения» соответствует более позднему периоду. Нулевое красное смещение характерно для локального участка современной Вселенной; красное смещение, равное 1 – для периода, имевшего место семь миллиардов лет назад. Красное смещение, равное 6, соответствует Вселенной в возрасте около одного миллиарда лет, а в самом ее начале, если бы мы могли это увидеть, красное смещение было бы равно бесконечности.
Итак, галактика с большим красным смещением – это далекий объект, который существовал на заре Вселенной, а галактика с маленьким красным смещением – это сравнительно близкий объект, существующий в «современном» космосе.
Взаимосвязь между расстоянием, возрастом и красным смещением имеет в космологии огромное значение. Однако она опирается на тот факт, что скорость удаления всегда и предсказуемым образом увеличивается с расстоянием. Но что если процесс расширения внезапно замедлится? Что если он остановится и обратится вспять? В этом случае наши правила измерения расстояний перестанут работать, что расстроит очень многих астрономов. Другим, почти столь же важным последствием, – в зависимости от того, кого вы спросите, – будет гарантированная гибель Вселенной и всего, что в ней находится.
Что однажды взлетело…
С тех пор, как мы выяснили, что (1) Вселенная началась с Большого взрыва и (2) в настоящее время она расширяется, нас интересует вопрос, может ли этот процесс обратиться вспять и закончиться катастрофическим Большим сжатием. Исходя из некоторых очень простых и разумных предположений, мы можем выделить всего три варианта развития событий для расширяющейся Вселенной, и все они являются прямыми аналогами того, что может случиться с мячом, подброшенным в воздух.
Если исследование реликтового излучения позволяет нам увидеть Большой взрыв, то ускорители частиц дают нам попробовать на вкус первичный бульон[26].
Первичный нуклеосинтез
После окончания фазы кварк-глюонной плазмы температура Вселенной понизилась достаточно для того, чтобы в ней начали образовываться некоторые из знакомых нам частиц. Спустя примерно одну десятую долю миллисекунды после возникновения Вселенной в ней сформировались первые строительные блоки обычной материи – протоны и нейтроны, за которыми вскоре последовали электроны. Где-то около двухминутной отметки Вселенная охладилась до комфортной температуры в миллиард градусов Цельсия, что гораздо горячее, чем центр Солнца, но достаточно прохладно для того, чтобы сильное ядерное взаимодействие могло объединить друг с другом только что возникшие протоны и нейтроны. Из них образовалось первое атомное ядро – форма водорода, называемая дейтерием (один протон, связанный с одним нейтроном; технически один протон также может считаться ядром, поскольку он является центром атома водорода). Вскоре такие ядра уже формировались повсюду. Некоторые протоны и нейтроны начали объединяться, образуя ядра гелия, трития, а также лития и бериллия. Этот процесс, называемый первичным нуклеосинтезом, продолжался около получаса до тех пор, пока Вселенная не остыла и не расширилась настолько, что частицы могли удаляться друг от друга на достаточное расстояние и уже не сливаться.
Одним из лучших подтверждений теории Большого взрыва является факт обнаружения тесной связи между нашими наблюдениями за космосом и расчетным количеством элементов, которое мы ожидаем, основываясь на оценках температуры и плотности первичного огненного шара. Это соответствие не совершенное – существует некоторая путаница, связанная с количеством лития, которая может свидетельствовать о какой-то неизвестной пока странности, свойственной ранней Вселенной. Что же касается водорода, дейтерия и гелия, фактическое их количество прекрасно согласуется с тем, которое мы ожидали бы обнаружить, если бы на ранних этапах своего развития весь космос представлял собой одну большую ядерную топку.
Кроме того, факт, что почти весь водород во Вселенной образовался в первые несколько минут после ее возникновения, говорит о том, что большая часть составляющего наш организм вещества в той или иной форме существовала во Вселенной практически на протяжении всей ее истории. Возможно, вы уже слышали, что «мы состоим из звездной пыли» (или «звездного вещества», как выразился Карл Саган), и это абсолютно верно, если судить по массе. Все наиболее тяжелые элементы в нашем теле – кислород, углерод, азот, кальций и т. д. – сформировались позднее, либо в недрах звезд, либо в результате их взрывов. Что касается количества, то самым распространенным элементом в нашем организме является водород (наиболее легкий элемент). Таким образом, мы действительно отчасти состоим из пыли древних поколений звезд. Однако мы также в значительной степени состоим из побочных продуктов Большого взрыва. Так что утверждение Карла Сагана остается в силе: «Мы – способ, которым Космос познает себя».
Поверхность последнего рассеяния
После окончания стадии первичного нуклеосинтеза содержимое Вселенной начало понемногу успокаиваться. К этому моменту смесь частиц была уже более или менее стабильной и оставалась таковой вплоть до появления первых звезд миллионы лет спустя. Однако на протяжении многих сотен тысяч лет космос все еще представлял собой горячую, гудящую плазму, состоящую в основном из ядер водорода и гелия и свободных электронов, между которыми сновали фотоны (частицы света).
С течением времени Вселенная расширялась, и излучение и материя распространялись. Иногда я представляю эту фазу ранней Вселенной в виде путешествия из центра Солнца наружу, только вместо движения в пространстве в данном случае происходит движение во времени. Оно начинается из центра Солнца, где температура и плотность настолько высоки, что атомные ядра сливаются друг с другом, образуя новые элементы. Внутренняя часть Солнца заполнена светом. Фотоны непрерывно отскакивают от электронов и протонов с такой силой, что им могут потребоваться сотни тысяч лет для того, чтобы достичь поверхности. По мере приближения к ней плазма становится все менее плотной, благодаря чему свет может перемещаться на большие расстояния, не сталкиваясь с препятствиями. После достижения поверхности он может свободно распространяться в космосе.
Аналогичным образом, в результате путешествия во времени, длившегося примерно 380 000 лет, начиная с первых минут существования Вселенной, весь космос превратился из горячей плотной плазмы в охлаждающийся газ из протонов и электронов, способных объединиться в нейтральные атомы, позволяя свету свободно распространяться между ними вместо того, чтобы постоянно отскакивать от заряженных частиц. Мы называем конец этой стадии огненного шара ранней Вселенной «поверхностью последнего рассеяния», поскольку речь идет о своего рода поверхности во времени, когда свет высвобождается из плазменной ловушки и получает возможность беспрепятственно путешествовать сквозь космос.
Именно это мы видим, когда наблюдаем космическое микроволновое фоновое излучение: момент, определяющий окончание Горячего Большого взрыва и переход ко Вселенной, в которой свет распространяется в темном и безмолвном пространстве. Этот момент также можно считать началом космического периода Темных веков, – промежутка времени, в течение которого газ медленно охлаждался и конденсировался в сгустки под воздействием первичных колебаний плотности. Примерно у отметки в 100 миллионов лет один из этих сгустков становится настолько плотным, что на его месте вспыхивает звезда, знаменующая начало эпохи, получившей название «Космический рассвет».
Космический рассвет
Превращение темной, наполненной газом Вселенной в космос, залитый светом звезд и галактик, в основном было обусловлено некой экзотической материей, которую нам пока не удалось воссоздать в самых мощных ускорителях частиц. Наряду с излучением, газообразным водородом и другими первичными элементами в ранней Вселенной существовало вещество, которое мы называем темной материей. Хотя на самом деле она не темная, а невидимая, – кажется, что она совершенно не желает каким-либо образом взаимодействовать со светом. Она ничего не излучает, не поглощает и не отражает. Насколько мы можем судить, луч света просто проходит сгусток темной материи насквозь. Однако темная материя способна оказывать гравитационное воздействие. Когда обычная материя пытается сконденсироваться в сгусток под действием собственной гравитации, она испытывает давление, направленное в обратную сторону. Однако темная материя способна конденсироваться, не ощущая воздействия этой силы. Побочным эффектом отсутствия взаимодействия со светом оказалось то, что эта материя вообще ни с чем не взаимодействует, поскольку в большинстве случаев столкновения между частицами материи происходят вследствие электростатического отталкивания, условием которого является взаимодействие со светом. (Фотоны представляют собой частицы света, однако они также переносят электромагнитное взаимодействие, поэтому нечто невидимое не испытывает электромагнитного притяжения или отталкивания). Нет электромагнетизма – нет давления.
Первые небольшие сгустки вещества, сформировавшиеся в результате колебания плотности в конце фазы инфляции, состояли из радиации, темной и обычной материи. Поскольку обычное вещество испытывало на себе воздействие давления и смешивалось с излучением, поначалу только темная материя могла слипаться под влиянием гравитации. Позднее, когда Вселенная расширилась еще больше, позволив радиации распространиться, а материи остыть, газ смог попасть в эти гравитационные колодцы и сконденсироваться в звезды и галактики. Даже сегодня структура материи в самых больших масштабах, то есть космическая сеть галактик и их скоплений, поддерживается паутиной из сгустков и нитей темной материи. В эпоху космического рассвета эти невидимые сгустки и нити начали светиться по мере того, как звезды и галактики зажигались в темноте, словно сказочные огоньки.
Эпоха галактик
Следующий переходный момент в развитии Вселенной наступил тогда, когда в космосе появилось столько звездного света, что он ионизировал окружающий газ, который к окончанию стадии огненного шара стал нейтральным. Интенсивный звездный свет снова разделил атомы водорода на свободные электроны и протоны, породив гигантские пузыри ионизованного газообразного водорода, окружающие самые яркие скопления галактик. Формирование этих расширяющихся пузырей ознаменовало начало эпохи реионизации (приставка «ре» говорит о том, что газ был ионизирован в самом начале во время Большого взрыва, а теперь подвергся повторной ионизации светом звезд). Этот переходный процесс, который завершился где-то у отметки в миллиард лет, в настоящее время является одним из рубежей наблюдательной астрономии, и мы еще только начинаем понимать, как и когда он произошел. На протяжении следующих 13 миллиардов лет происходило примерно одно и то же: галактики формировались и объединялись, сверхмассивные черные дыры накапливали массу в центрах галактик, рождались и жили своей жизнью новые звезды.
Итак, в конце концов мы очутились в том космосе, каким мы его видим сегодня, – в этой огромной и прекрасной паутине галактик, сияющих во тьме. Наша собственная бело-голубая планета вращается вокруг умеренного размера желтой звезды в галактике, которая по всем параметрам близка к средней. И, несмотря на то что нам до сих пор не удавалось обнаружить однозначных признаков этого, наша ничем не примечательная галактика вполне может изобиловать жизнью, поскольку взрывы сверхновых звезд уже давно обеспечили каждый из миллиардов миров основными компонентами для развития биологических форм. Согласно текущим оценкам, в каждой десятой звездной системе есть планета, чей размер и расстояние до звезды позволяет воде на поверхности находиться в жидком состоянии, что может служить признаком существования жизни. В триллионе других галактик в наблюдаемой Вселенной может обитать бесчисленное множество различных видов существ со своей цивилизацией, искусством, культурой, наукой и совершенно особым взглядом на историю космоса. В каждом из этих миров существа, похожие или сильно отличающиеся от нас, тоже могут обнаружить слабый гул космического микроволнового фонового излучения, прийти к выводу о произошедшем когда-то Большом взрыве и к пониманию того, что наш общий космос существовал не всегда, а имел начало, первую частицу и первую звезду.
И те другие существа, как и мы, могут прийти к тому же самому заключению: Вселенная не является статичной, она когда-то возникла и неизбежно должна однажды исчезнуть.
Глава 3. Большое сжатие
Предлагаю начать с конца света. Покончим с ним и перейдем к более интересному.
Н. К. Джемисин, «Пятое время года»
В темную безлунную осеннюю ночь, находясь в Северном полушарии, посмотрите вверх и найдите на небе созвездие Кассиопея в виде буквы W. Вглядитесь в пространство под ним, и, если небо будет достаточно темным, вы увидите тусклое размытое пятно, ширина которого примерно соответствует диаметру полной луны. Это галактика Андромеды, огромный спиральный диск с триллионом звезд и сверхмассивной черной дырой в центре, который несется нам навстречу со скоростью 110 километров в секунду.
Примерно через четыре миллиарда лет галактика Андромеды и наша галактика Млечный Путь столкнутся, устроив потрясающее световое шоу. Звезды будут сходить со своих орбит, образуя звездные потоки, простирающиеся сквозь космос изящными дугами. Внезапное столкновение галактического водорода приведет к рождению новых звезд. Газ воспламенится вокруг спящих в центре галактик сверхмассивных черных дыр, которые начнут постепенно сближаться друг с другом, пока не сольются воедино. Струи интенсивного излучения и частиц высоких энергий будут пронзать хаотический клубок газа и звезд, а в центральной области новой галактики «Млечномеда» образуется испускающий рентгеновское излучение водоворот обреченной материи, падающей в новую, еще более массивную черную дыру.
Даже в самый разгар этой галактической катастрофы лобовые столкновения между звездами маловероятны из-за огромных расстояний между ними. Солнечная система в целом, скорее всего, выживет. Чего нельзя сказать о Земле. К тому моменту Солнце уже перейдет в стадию красного гиганта, в результате чего температура Земли увеличится настолько, что океаны полностью испарятся, и жизнь на ее поверхности станет невозможной. Однако, если человечеству удастся найти пристанище в другой части Солнечной системы, то на протяжении нескольких миллиардов лет люди смогут любоваться впечатляющим зрелищем, наблюдая за процессом объединения двух огромных спиральных галактик. Когда струи частиц иссякнут и отбушуют взрывы сверхновых, получившаяся в результате объединения галактик масса будет представлять собой гигантское эллипсоидное скопление старых и умирающих звезд.
Каким бы катастрофическим ни казалось слияние галактик его непосредственным участникам, оно представляет собой вполне обычное космическое явление и довольно завораживающее, если наблюдать его с огромного расстояния. Большие галактики разрывают на части и поглощают более мелкие; соседние звездные системы сливаются друг с другом. Существуют свидетельства того, что наш Млечный Путь поглотил десятки своих более мелких соседей, – мы до сих пор можем видеть гигантские звездные хвосты, закручивающиеся вокруг диска нашей галактики, словно обломки, оставшиеся после межзвездной автомобильной катастрофы.
Однако в масштабе Вселенной подобные столкновения становятся все более редким явлением. Вселенная расширяется, – пространство, то есть расстояние между объектами, а не сами объекты, увеличивается. Это означает, что отдельные галактики и группы галактик в среднем все сильнее удаляются друг от друга. Внутри самой группы и скопления слияния по-прежнему могут иметь место. В непосредственной близости от нас находятся звездные системы, объединенные в группу с невыразительным названием «Местная группа галактик», представляющую собой разношерстную компанию небольших и неправильных галактик, на фоне которых выделяются две гигантские спирали, и всем им рано или поздно суждено слиться воедино. Однако объекты, находящиеся на больших расстояниях, порядка нескольких десятков миллионов световых лет, судя по всему, удаляются от нас.
В долгосрочной перспективе главный вопрос следующий: будет ли это расширение продолжаться бесконечно или оно когда-то закончится и обратится вспять? Откуда мы вообще знаем, что расширение имеет место?
Когда вы находитесь во Вселенной, которая расширяется равномерно во всех направлениях, вы наблюдаете не расширение как таковое, а скорее удаление всех объектов от вас. С Земли видно, как далекие галактики разбегаются от нас, будто мы их каким-то образом отталкиваем. Однако если бы мы внезапно оказались в галактике за миллиард световых лет отсюда, мы и там увидели бы, как Млечный Путь и все остальные объекты, находящиеся за пределами некоторой области, удаляются от нас. Этот феномен является несколько контринтуитивным следствием равномерного и повсеместного расширения пространства.
Таким образом, каждая точка во Вселенной – это центр мощного равномерного отталкивания. Технически Вселенная не имеет центра. Однако каждый из нас является центром собственной наблюдаемой Вселенной[27]. И с нашей точки зрения, все галактики, находящиеся за пределами нашей группы, удаляются от нас с максимально возможной скоростью. Но дело не в нас; дело в космологии.
Обнаружить космическое расширение было не так легко, как может показаться. Несмотря на то что галактики начали наблюдать в телескопы уже в 1700-х годах, из-за их огромной удаленности и чудовищно медленного (по человеческим меркам) движения людям потребовалось более двух веков для того, чтобы выяснить, как они движутся относительно нас и являются ли они вообще галактиками. Даже самые мощные современные телескопы не позволяют наблюдать их движение напрямую – галактики не кажутся удаляющимися от нас, когда мы на них смотрим. Однако мы можем обнаружить это, проанализировав такое, на первый взгляд, не имеющее отношения к делу свойство галактик, как цвет их свечения.
Если вы когда-либо замечали, как меняется звук проезжающей мимо гоночной машины или обращали внимание на изменение тона сирены при ее приближении и удалении, то вы уже знакомы с эффектом Доплера. Доплеровское смещение – это явление, при котором звук становится более высоким по мере приближения издающего его объекта и более низким по мере его удаления. Это связано с изменением частоты воспринимаемого звука вследствие сокращения и увеличения длины звуковой волны. В конце концов, частота зависит от скорости, с которой волны достигают вас. В случае со звуком это волны давления, и более высокая частота характеризуется более высоким звуком.
Оказывается, нечто подобное происходит и со светом. Свету быстро приближающегося к нам источника свойственна более высокая частота, а быстро удаляющегося – более низкая. В случае со световой волной частота определяет цвет, поэтому такой сдвиг воспринимается как изменение цвета. Электромагнитный спектр простирается далеко за пределы видимого, но что касается света, доплеровский сдвиг в сторону более высоких частот называется синим смещением, а сдвиг в сторону более низких частот – красным смещением. При сильном синем смещении видимый свет может восприниматься как гамма-излучение, а при сильном красном смещении – как радиосигнал. Этот феномен является одним из наиболее важных и универсальных инструментов в астрономии, поскольку позволяет нам по одному лишь цвету звезды или галактики определить, приближается она к нам или удаляется.
Разумеется, на практике все немного сложнее. Некоторым звездам и галактикам просто свойствен красноватый цвет. Как же в таком случае понять, является ли какой-то объект красным на самом деле или просто кажется таковым, поскольку удаляется от нас?[28] Ключ в том, что свет представляет собой не одиночную волну с определенными характеристиками, а поток волн разных частот – спектр. Набор спектральных линий в спектре звезды обусловлен светом, поглощаемым или испускаемым различными химическими элементами в составе ее атмосферы. При разложении света с помощью призмы мы видим спектр цветов разной интенсивности, при этом темные линии или промежутки появляются на тех частотах, которые соответствуют свету, поглощенному атомами, содержащимися в атмосфере звезды, из-за чего этому свету так и не удалось достичь нас. В результате мы имеем своеобразный, уникальный для каждого элемента штрихкод из набора линий, который астрономы могут легко распознать. Например, при разложении проходящего сквозь облако водорода света по длинам волн мы увидим характерный гребнеобразный рисунок темных линий. В ходе лабораторных испытаний мы можем выяснить, где именно должны находиться эти линии и каким должен быть их рисунок для того или иного элемента. Если звезда имеет в своем спектре узнаваемую последовательность линий, но располагается она на «неправильных» частотах, это говорит о смещении спектра звезды вследствие ее движения. Если все линии одинаково смещены в сторону более низких частот, то мы имеем дело с красным смещением, которое свидетельствует об удалении звезды. Если каждая линия сдвинута в сторону более высоких частот, речь идет о синем смещении, говорящем о том, что звезда приближается. При этом степень смещения линий позволяет определить скорость движения звезды.
Астрономы достигли больших успехов в проведении подобных измерений. В настоящее время красное и синее смещение представляет собой одну из самых легко измеряемых характеристик любого источника света во Вселенной, при условии, что спектр снят и в нем присутствуют узнаваемые наборы линий. Благодаря этому мы можем понять, как звезды в нашей галактике движутся относительно нас, а также обнаружить небольшое колебание звезды, вызванное вращающейся вокруг нее планетой.
В случае с далекими галактиками красное смещение позволяет нам выяснить не только то, приближаются они к нам или удаляются, и с какой скоростью, но и определить расстояние до них. Каким образом? Дело в том, что вследствие расширения Вселенной пространство между нами и далекой галактикой увеличивается, поэтому, как бы она ни двигалась относительно нас, в целом она будет удаляться. И скорость ее удаления зависит от того, насколько далеко она находится сейчас.
В 1929 году в ходе изучения красного смещения галактик астроном Эдвин Хаббл заметил поразительную закономерность. Более далеким галактикам в среднем свойственны более высокие показатели красного смещения. Эта закономерность позволила нам подтвердить гипотезу о расширении космоса и получить представление об этапах его эволюции. Обнаруженная Хабблом взаимосвязь между показателем красного смещения и скоростью говорит о том, что чем дальше находится галактика, тем быстрее она от нас удаляется.
Представьте, что вы берете в руки игрушку-пружинку «слинки» и растягиваете ее. (Просто растягиваете. Это для науки.) По мере разведения рук в стороны каждый виток пружинки удаляется от соседнего лишь на ширину пальца, при этом два витка на противоположных ее концах удаляются друг от друга более чем на метр. Если пространство расширяется равномерно во всех направлениях, подобные закономерности должны действовать и в космосе, что и обнаружил Хаббл в ходе своих наблюдений. Математически это выражается в виде простого правила: кажущаяся скорость удаления галактики прямо пропорциональна расстоянию до нее. Из этого следует, во-первых, что более отдаленные объекты удаляются от нас быстрее. Во-вторых, существует некоторое число, на которое можно умножить расстояние до любой галактики, чтобы выяснить ее скорость. Несмотря на то что именно Хаббл в итоге доказал существование этой закономерности и вычислил приблизительное значение данного коэффициента, сама закономерность была описана теоретически на несколько лет раньше бельгийским астрономом и священником Жоржем Леметром. Поэтому данное отношение стало называться законом Хаббла – Леметра[29].
А коэффициент пропорциональности (число, на которое мы умножаем расстояние) – постоянной Хаббла.
Самой важной для нас в данном случае является связь между красным смещением и расстоянием. Она означает, что на основании измерения красного смещения далекой галактики мы можем точно определить расстояние до нее. (С некоторыми техническими оговорками[30].)
Однако красное смещение также связано с космическим временем. Расширение Вселенной многое в астрономии делает весьма странным, и одна из таких вещей заключается в использовании цвета, записанного в виде числа, для обозначения скорости, расстояния и «возраста, в котором находилась Вселенная в то время, когда данный объект испустил свет». Физика – безумная наука.
Вот как это работает. Если мы измерим красное смещение галактики, мы будем точно знать, насколько быстро она удаляется от нас, а с помощью закона Хаббла-Леметра мы можем выяснить расстояние до нее. Однако поскольку свету требуется время, чтобы добраться до нас, и нам известна его скорость, знание расстояния также говорит нам о том, как долго свет был в пути. Это означает, что измерение красного смещения галактики позволяет понять, как давно свет ее покинул. А поскольку нам известен текущий возраст Вселенной, мы можем выяснить, сколько лет ей было в тот момент, когда данная галактика испустила свет, который мы видим.
Принимая все это во внимание, астрономы могут использовать красное смещение для обозначения более ранних эпох Вселенной. «Высокое значение красного смещения» говорит о давнем времени, когда Вселенная была очень молодой; «низкое значение красного смещения» соответствует более позднему периоду. Нулевое красное смещение характерно для локального участка современной Вселенной; красное смещение, равное 1 – для периода, имевшего место семь миллиардов лет назад. Красное смещение, равное 6, соответствует Вселенной в возрасте около одного миллиарда лет, а в самом ее начале, если бы мы могли это увидеть, красное смещение было бы равно бесконечности.
Итак, галактика с большим красным смещением – это далекий объект, который существовал на заре Вселенной, а галактика с маленьким красным смещением – это сравнительно близкий объект, существующий в «современном» космосе.
Взаимосвязь между расстоянием, возрастом и красным смещением имеет в космологии огромное значение. Однако она опирается на тот факт, что скорость удаления всегда и предсказуемым образом увеличивается с расстоянием. Но что если процесс расширения внезапно замедлится? Что если он остановится и обратится вспять? В этом случае наши правила измерения расстояний перестанут работать, что расстроит очень многих астрономов. Другим, почти столь же важным последствием, – в зависимости от того, кого вы спросите, – будет гарантированная гибель Вселенной и всего, что в ней находится.
Что однажды взлетело…
С тех пор, как мы выяснили, что (1) Вселенная началась с Большого взрыва и (2) в настоящее время она расширяется, нас интересует вопрос, может ли этот процесс обратиться вспять и закончиться катастрофическим Большим сжатием. Исходя из некоторых очень простых и разумных предположений, мы можем выделить всего три варианта развития событий для расширяющейся Вселенной, и все они являются прямыми аналогами того, что может случиться с мячом, подброшенным в воздух.